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RCML History 

The Research Council on Mathematics Learning, formerly The Research Council for 

Diagnostic and Prescriptive Mathematics, grew from a seed planted at a 1974 national 

conference held at Kent State University. A need for an informational sharing structure in 

diagnostic, prescriptive, and remedial mathematics was identified by James W. Heddens. A 

group of invited professional educators convened to explore, discuss, and exchange ideas 

especially in regard to pupils having difficulty in learning mathematics. It was noted that there 

was considerable fragmentation and repetition of effort in research on learning deficiencies at all 

levels of student mathematical development. The discussions centered on how individuals could 

pool their talents, resources, and research efforts to help develop a body of knowledge. The 

intent was for teams of researchers to work together in collaborative research focused on solving 

student difficulties encountered in learning mathematics. 

 

Specific areas identified were: 

 

1. Synthesize innovative approaches.  

2. Create insightful diagnostic instruments.  

3. Create diagnostic techniques.  

4. Develop new and interesting materials.  

5. Examine research reporting strategies. 

 

As a professional organization, the Research Council on Mathematics Learning (RCML) may 

be thought of as a vehicle to be used by its membership to accomplish specific goals. There is 

opportunity for everyone to actively participate in RCML. Indeed, such participation is 

mandatory if RCML is to continue to provide a forum for exploration, examination, and 

professional growth for mathematics educators at all levels. 

 

The Founding Members of the Council are those individuals that presented papers at one of the 

first three National Remedial Mathematics Conferences held at Kent State University in 1974, 

1975, and 1976. 
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DESIGNING FOR A STRUCTURED SMALL GROUP  

MATHEMATICS LEARNING ENVIRONMENT 

 

 Daniel J. Heck Jessica Dula 

 Horizon Research, Inc. Horizon Research, Inc. 

 dheck@horizon-research.com j.dula@horizon-research.com 

 

This study of secondary mathematics classrooms illustrates the impact curricular supports can 

have on students’ connections to the math task, peer-to-peer discourse, and social dynamics in 

small groups. Naturalistic observations of small group work provide illustrative examples of 

limited group functioning while working on cognitively demanding math tasks and the potential 

that curricular supports have in strengthening group functioning when added to the same tasks. 

  

Small group learning environments promote opportunities for conceptual learning and 

powerful mathematical work (e.g., Mercer, 2005). Effective group work depends on tasks that 

are cognitively challenging for group efforts, discourse that promotes engagement and meaning-

making, and peer relational processes that support collaboration (Cohen, 1994). Facilitating 

small group work is complex for teachers because their presence with any one group is 

intermittent while multiple groups work simultaneously and independently. The Peers Engaged 

as Resources for Learning (PEARL) project studies small group learning environments in 

secondary mathematics classrooms. In the first four phases of PEARL, we worked with teachers 

and students to identify successes and challenges they encountered during small group 

instruction. During the fifth phase, we worked with teachers to test embedded curricular supports 

designed to promote small groups’ engagement with the demands of tasks, productive discourse, 

and positive social dynamics. Teachers first implemented a set of lessons where students worked 

in small groups without the PEARL curricular supports. The teachers then attended a summer 

workshop that introduced the supports and features of effective small group work. During the 

next school year, following refresher sessions for each lesson, they implemented the revised 

lessons with their students. The study described in this paper focuses on the role the curricular 

supports played in strengthening small group work in secondary mathematics classrooms.  

Theoretical Framework 

We conceptualize the small group learning environment as comprising three major elements: 

the mathematics task (Stein, Smith, Henningsen, & Silver, 2000), the discourse related to the 

mathematics content (Sztajn, Heck, & Malzahn, in press), and the peer social dynamics among 

the group members (Hamm & Hoffman, 2016). Effective group work depends on tasks that 
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coordinate these elements synergistically (Heck & Hamm, 2016). This study addressed the 

question: What is the potential of curricular supports to address students’ needs to engage 

productively with the demands of tasks, discourse, and social dynamics in small group work? 

We employ the Task Analysis Guide (Stein et al., 2000) to characterize the cognitive demand 

of a task. The structure and expectations of a written task denotes a set of demands for what 

students are intended to do. A teacher’s implementation may convey demands beyond or instead 

of those in the written task. In the hands of small groups of students, these expectations may be 

modified further as the students decide what their work entails. 

Tasks that demand conceptual mathematical thinking must be matched by discourse that 

supports a focus on mathematical ideas and reasoning. The Mathematics Discourse Matrix 

(Sztajn et al., in press) specifies four key dimensions of mathematics discourse: Explaining, 

Questioning, Listening, and using Modes of Communication. Variations in teacher and student 

actions within these four dimensions are tied to four types of discourse—Correcting, Eliciting, 

Probing, and Responsive—each serving different purposes for instruction and learning.  

We view peer social dynamics through the lens of Peer Cultures of Effort and Achievement 

which reflect the activities, routines, and norms that students develop in interaction with one 

another, that communicate the acceptability, desirability, and value of effort and achievement 

(Hamm, Hoffman, & Farmer, 2012). Teachers can influence peer cultures by setting and 

supporting expectations for social behaviors, scaffolding the kinds of social interactions they 

would like students to have with classmates (Farmer, Lines, & Hamm, 2011). 

Methods 

Four lessons were selected from The Math Resource for Instruction for North Carolina Math 

1 (2017), created by the state’s Department of Public Instruction. The lessons originated from 

two internationally available sources (illustrativemathematics.org and the Math Assessment 

Project at map.mathshell.org). To promote student engagement with the demands of the tasks, 

productive mathematics discourse, and positive social dynamics, we developed and embedded 

five curricular supports into student materials for the four selected lessons. Figure 1 shows how 

the supports were embedded into student handouts in a lesson titled Population and Food Supply. 

Do this First (A) directs each student’s attention to an initial access point, prompting them to 

begin work toward their individual contribution. Mathematically Meaningfully Roles (B) evenly 

assign the cognitively demanding aspects of the task and promote active communication. 
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Discourse Structures (C) are embedded into the lesson to explicitly indicate actions students 

should use to engage in productive discourse. Helping Prompts (D) are designed as just-in-time 

supports for students to seek help from and provide help to their peers, often attuned to common 

misconceptions about the content. A Group Product (E) ensures all students are accountable for 

individual contributions and promotes collective meaning making that draws them together. 

 

Figure 1. Embedded Curricular Supports for Small Group Work. 

One 8th and two 9th grade teachers of High School Math 1 participated as volunteers. Data 

collection took place in two waves. The teachers first implemented unedited versions of the four 

lessons, with the only expectation that students work in small groups. Following a summer 

workshop to develop facility with the curricular supports, the teachers implemented updated 

versions of the lessons in comparable classrooms during the subsequent year.  

We observed 17 lessons in the first wave and 14 in the second wave. The work of all 

consented small groups of students was audio recorded and observers took field notes, attending 

B 

A 

E 

D 

C 
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to non-audible evidence that would support analysis of audio recordings. Group sizes ranged 

from pairs to trios, with two to fourteen groups recorded per lesson. 

For illustrative purposes, the Population and Food Supply lesson was selected to compare the 

small group environment in the same teachers’ classrooms from the two waves of data 

collection. Using the three frameworks described above as a basis, one researcher (second 

author) reviewed the audio recordings from the first wave of data collection noting any evidence 

of students demonstrating a need for additional support to engage productively. Then, the 

researcher reviewed audio recordings from the same teacher’s class working on the same lesson 

in the second wave of data collection, noting evidence of students’ needs being met via the 

supports. All identified evidence was confirmed with the second researcher (first author). 

Results 

Throughout the PEARL study, we have identified challenges students face when working in 

small groups. They may have a hard time knowing how to get started meaningfully on tasks, how 

to ask for or provide help when necessary, how to manage multiple responsibilities, and how to 

have productive mathematical discussions. The examples that follow illustrate the potential of 

curricular supports to aid students in addressing these challenges.  

Do This First 

In wave 1, we saw evidence that students had a hard time beginning with the tasks. For 

example, one group of students indicated that they needed to get started multiple times, but it 

took them several minutes to move past just reading the question. They spent this time distracted 

with off-topic discussions until one told the group that they “need to make an equation and need 

to make another equation and need to do it fast.” The students then worked to quickly interpret 

the context of the problem and write an equation for population increase.  

The Do This First student support was designed to enable students’ access to the task so each 

will immediately engage with the mathematics. As shown in Figure 1 (A), the Do This First 

support instructed one student to complete a table to show the population increase over 5 years. 

When teachers implemented the revised lesson, specific students were able to engage with the 

task right away by completing this table of values. The following example is illustrative: 

S1: Population of Country A is initially 2 million people and they increase at 4% per year. 

S2: Initially. Per year. So, zero is going to be 2 million because you start off with it. 

S1: Okay. 
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S2: Just put 2 mil. And then for 1, so you increase by 0.4 

S1: It went up by 0.4 

S2: So 2 million – two zero zero zero zero zero zero times 0.4 …  

Students complete the table for the population after t years, eventually correcting 0.4 to 0.04. 

Mathematically Meaningful Roles 

Students often struggle to coordinate mathematical demands of tasks and social demands of 

group work, and productivity suffers (Barron, 2003). Without guidance, many students resort to 

unproductive strategies, such as a divide-and-conquer approach without coordination or allowing 

one group member to do all of the work. For example, when students worked on the Population 

and Food Supply lesson in wave 1, we often heard students say things like “I can’t do any of this, 

I’m just going to ask to go to the bathroom” and “Just tell me what to write for this one.” 

Strategically assigned roles can support individual engagement and collaboration. We 

provided two roles for pairs of students, one for population data (The Population Manager) and 

another for food supply data (The Food Supply Manager). In order to complete a graph and 

determine when there will be shortages of food, meaningful participation from both was 

required. In the example below, individual responsibilities ensured that both students had a role 

in completing the graph and prevented one student from taking over the other’s responsibilities. 

The Population Manager has graphed data and the Food Supply Manager is adding to it.  

Food Supply Manager: We got to do them on the same graph don’t we? 

Population Manager: Yeah. 

Food Supply: So numbers of years, 1. 

Population: It’s going to be a straight line, right? 

Food Supply: Yeah. 

Population: So 1 will be at 4 million. 

Food Supply: No, you have to put it at 4.5. 

Population: No no no you start – 

Food Supply: Yes, 1 will be at 4.5. 

Population: Hold on, wait wait wait. 

Food Supply: Yes, because look, 1 is right there, 4.5 million. 

Population: It’s going to be in the half, about right here. 

Both students continue to work together to make sure the data points are graphed precisely. 
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Discourse Structures 

Teachers expect students to discuss their mathematical thinking with their groups. However, 

students often struggle to have discussions that go farther than just telling their partner an answer 

or recounting a procedure. For example, when teachers implemented the Population and Food 

Supply lesson that did not include any discourse structures, students were generally observed 

either not talking to one another at all, or only talking when they had a final answer to share. 

The discourse structures embedded into the lesson gave students explicit instructions to 

promote discussions, both explaining their own work and listening to their peers’ explanations. 

In this example, the Population Manager and the Food Supply Manager are instructed to describe 

how they developed an equation to represent their situation. These explicit instructions offered 

the students an opportunity to formalize and share their thinking in a socially productive form. 

Food Supply Manager: Alright, so now I have to describe my work from my table and we 

have to come up with an equation. So I saw that the initial value was 4 million people and it’s 

increasing 0.5 million per year. So I did a slope equation: f(x) = 0.5... for the 0.5 million 

people per year, and then my initial value was 4 million, so that’s the y-intercept. 

Population Manager: Yeah, I get that. 

Food Supply: Alright, so put that in for number 3. 

Population: Just write that? 

Food Supply: Yeah, just write the equation that I wrote. And now you describe your work 

from your table and we’ll determine what the equation should be. 

Population: Okay, well, we start at 2 million and there’s a 4% growth each year and this is a 

whole number of 1 because, you know, you have to keep the 2 million. 

Food Supply: Right. 

Population: And that’s the 4% growth and this is the number of years. 

Helping Prompts 

We have observed that it is challenging for them to ask for help or provide help when 

misunderstandings surface. For instance, when students indicated that they were stuck on part of 

the Population and Food Supply lesson in wave 1, their group members might either not respond 

or respond by only telling them an answer, leaving misunderstandings unaddressed. As an 

example, in one group of three, two students were having trouble graphing and sought help, “I’m 

kind of lost. [Name], are you going to help us out?” The third student attempted to help, but was 
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unable to do so effectively, resulting in the comment, “Here, write it out for me because you just 

confused me,” as she ended up taking their paper and graphing the data for her peers.  

Helping Prompts were designed to guide seeking and providing help. They offer just-in-time 

support for students to use if they are stuck. In the Population and Food Supply lesson in wave 2, 

students were more likely to ask their partners specific questions to help resolve their 

misunderstandings and partners were more likely to provide assistance that helped them learn 

rather than prioritizing final answers without explanation. For example, students asked questions 

like “How do you know?” and “Linear means that it’s going to be a straight line, right?” and 

students provided explanations like “The food will run out between years 75 and 80 because I 

know that when the lines cross there will be more people than food.” 

Group Product 

When working in small groups on a cognitively demanding task, students often struggle to 

bring all of their work together to make sense of it. For example, in the Population and Food 

Supply lesson, students observed in the first wave of data collection might type two equations 

into a calculator, find the intersection point, and finish the task without sharing their ideas or 

making sense of their work in a more meaningful way.  

Including a group product in a lesson promotes shared effort and meaning making that draws 

on individual contributions. Each student is responsible for answering their own questions, but 

they also need to collaborate with their partners to create a group product and make sense of the 

work that was done individually. In the example below, two students were examining population 

and food data graphed together. They concluded it would be many years before a food shortage.  

Food Supply Manager: I mean, you see yours, they’re like 2.08 or … 

Population Manager: They don’t even go above 2.5! 

Food Supply: Oh gosh, yeah. They’re all going to be very close. 

Population: It’s just going to have to look the way it is. 

Food Supply: It’s fine. Yeah, I mean, yours are all very close and mine are all spread out. 

Population: Thankfully, it doesn’t look like we’re going to run out of food any time soon. 

Conclusion 

Comparisons between the two small group work environments illustrate the potential of the 

curricular supports to address specific needs and strengthen group functioning. The purposively 

selected case analysis illustrated students’ need for and use of supports when they encountered 
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challenges related to the three major elements of the small group learning environment: 

mathematics task demands, productive discourse, and positive peer social dynamics. The student 

curricular supports that were embedded into the lesson mutually reinforced the coordination of 

the different elements of small group work and show potential for helping students improve their 

group functioning. In our ongoing work, a complete and systematic analysis of the small group 

environments in both waves of the study, using time sample coding and sentiment analysis 

related to the three frameworks, will further establish how and how well the curricular supports 

and other factors affect the functioning of the small group learning environment.  
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GIRLS’ CONSTRUCTION OF MATHEMATICAL DISCOURSE IN SINGLE-SEX 

CLASSROOM ENVRIONMENTS 

 

McKenzie Brittain                         Megan Che                         Carlos Nicholas Gomez  

          Clemson University           Clemson University                      Clemson University  

         mhoxit@clemson.edu              sche@clemson.edu                       carlos@clemson.edu  

 

This study seeks to examine and illuminate the ways in which girls in middle grades single-sex 

mathematics classrooms construct mathematical Discourses. We implement a holistic case study 

design by providing an in-depth description of how girls engage in constructing mathematical 

Discourses both with other students and their teacher.  

 

Background 

Single-sex education offerings increased since the change in regulations to Title IX in the 

United States (Federal Register, 2006), and single-sex public education options recently emerged 

(Carter, Kombe, & Che, 2014). Because of this recency, research on single-sex public 

classrooms in the U.S. is limited (Bracey, 2006). Scholars have demonstrated the lack of 

evidence to support single-sex education (Mael, Smith, Alonso, Rogers, & Gibson, 2004; Smyth, 

2010); specifically in mathematics education (Carter et al., 2014; Che, Wiegert, & Threlkeld, 

2012). There are gaps in our understanding of the affordances and drawbacks of these classroom 

spaces. It is imperative we continue to research how these spaces impact and affect student 

learning because of our limited understanding in how students experience and learn in single-sex 

mathematics classrooms. 

Following the influential work of Fennema (1974), it is imperative we facilitate success for 

all students in mathematics. All students have the ability to be successful in mathematics and it is 

our job to facilitate mathematics learning that allows students to be successful, whatever that 

success means for each student. Our study seeks to contribute to our understandings of the 

affordances and drawbacks of single-sex classrooms, by examining the processes in which girls 

construct mathematical Discourses (Moschkovich, 2003) in single-sex mathematics spaces. To 

explore and further understand these classroom spaces, the following questions guide this study:  

1. In what ways do girls in middle grades mathematics classes engage in constructing 

mathematical Discourses in single-sex environments? 

2. What forms of positioning do girls utilize as they construct mathematical Discourses with 

other students in their classroom? 

mailto:mhoxit@clemson.edu
mailto:SCHE@CLEMSON.EDU
mailto:CARLOS@CLEMSON.EDU
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3. What forms of positioning do girls utilize as they construct mathematical Discourses with 

their teacher in their classroom? 

Theoretical Framework 

We focus on the construction of mathematical Discourses (Moschkovich, 2003) for girls in 

single-sex environments. We follow Gee’s (1999) definition of Discourse because language 

alone will not be sufficient for understanding how mathematical Discourses are constructed. 

Moschkovich (2003) points to Gee’s definition of Discourse (Gee, 1999) and builds on the 

definition to define mathematical Discourse: 

Mathematical Discourse includes not only ways of talking, acting, interacting, thinking, 

believing, reading, writing but also mathematical values, beliefs, and points of view. 

Participating in mathematical discourse practices can be understood in general as talking and 

acting in the ways that mathematically competent people talk and act when talking about 

mathematics (Moschkovich, 2003, p. 3-326). 

Participating in mathematical discussion is an important aspect of mathematical discourse in the 

classroom (Moschkovich, 1999). Students participate in mathematical discussions according to 

Brenner (1994) by “making conjectures, presenting explanations, constructing arguments, etc. 

about mathematical objects, with mathematical content, and towards a mathematical point” (as 

cited in Moschkovich, 1999, p. 12). Specifically, we use positioning theory (as outlined by 

Herbal-Eisenmann, Wagner, Johnson, Suh, & Figueras, 2015) as a lens to narrow on the 

interactions and relationships occurring in single-sex classrooms. In this study, “positioning” 

correlates to the discursive processes where individuals are in conversations “as observably and 

subjectively coherent participants in jointly produced story-lines” (Davies & Harre, 1990, p. 48) 

and positioning as a metaphor represents relationships (Harre & van Langenhove, 1999; as cited 

in Herbel-Eisenmann & Wagner, 2010). Positioning theory guides this study as a way to narrow 

in on the interactions and relationships that occur in single-sex classrooms. Drawing on these 

theoretical frames informing our research questions, we recognize classrooms are spaces which 

encompass students and teachers of all backgrounds, a variety of Discourses, and numerous 

forms of positioning.  

Methods 

To gain comprehensive and different perspectives of how girls construct mathematical 

Discourses, a holistic case study design was implemented to investigate mathematical Discourses 
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girls construct in a middle grades single-sex classroom. The case includes all data gathered 

involving mathematical Discourses constructed in a middle grades single-sex classroom. 

Data for this study were drawn from audio-visual recordings in an all-girls middle grades 

mathematics classroom. The teacher was a middle-aged white male. Data were collected and 

analyzed based on interactions and mathematical Discourses which took place in the classroom 

setting. The goal of the collected data was to provide a descriptive view of the classroom space 

and student experiences. 

Participants 

In selecting participants, we looked for the extent to which students exhibited willingness to 

interact with other students, engage in conversation with the teacher and their peers, and write 

and participate in their mathematics work. In this paper, we focus only on students in a single-

sex classroom. Below we provide a description of each single-sex participant and their rationale 

for selection. 

Jasmine. Jasmine often engaged in conversation with her teacher by responding to questions 

posed by the teacher and speaking when selected to share her mathematical thinking. Jasmine 

raised her hand to verbally ask the teacher questions about her mathematics work both publicly 

and privately. Additionally, Jasmine volunteered to demonstrate her written mathematical work 

on the board for her classmates and teacher to observe. Jasmine often wrote and participated in 

her mathematics work. Jasmine’s engagement in all forms of mathematical Discourse 

(Moschkovich, 2003) throughout the entirety of the lesson was the importance for her selection 

and she represented one end of the participation spectrum. Jasmine participated in mathematical 

discussion (Moschkovich, 1999) and was an active participant in the classroom. Jasmine engaged 

in written, spoken, acted, listening, and interacted (Gee, 1999) mathematical Discourses 

(Moschkovich, 2003). 

Zara. Zara was reserved verbally in the beginning and did not engage in conversation with 

the teacher. Zara did write and participate in her mathematics work; however, this was the norm 

for all students in this particular classroom. During one particular lesson Zara was called on 

unexpectedly by the teacher and she was not prepared to respond to his mathematical question. A 

shift occurred after this interaction, in which Zara became more vocal and interactive with her 

teacher. The transition of Zara’s engagement was the importance for her selection. Although 
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Zara engaged in conversation with her teacher after being called on, Zara was not an active 

participant in the classroom. 

Analysis of Data 

For the purposes of this paper, we analyzed a case from a middle grades single-sex 

mathematics classroom. In analyzing the constructed discourses, we focus on mathematical 

Discourses constructed by girls and the interactions and actions which occur around the 

construction of those mathematical Discourses. Further, we look for different positions and/or 

storylines occurring in interactions. We labeled and identified the types of positionings, 

storylines, and/or communication acts that occurred (Herbel-Eisenmann et al., 2015).  

We collected video recordings of three different lessons which we transcribed to include the 

participants’ interactions, actions, gestures, writing, and talk with other students and the teacher. 

We coded all transcriptions for Jasmine and developed a list of codes. We then used these codes 

to code Zara’s transcriptions. Through coding the transcriptions for Zara, additional codes 

emerged. We used the updated list of codes to recode Jasmine’s transcriptions. We generated a 

separate list of codes for the teacher. We transcribed all talk, actions, interactions, and gestures 

of the teacher in each lesson. We only coded for the teacher when he was interacting, talking, or 

gesturing towards the specific participants in our study. After coding all participant 

transcriptions, we looked for common themes that emerged. Examples of emergent themes 

include students being positioned and positioning themselves as active academic students, and 

students positioning themselves as passive students. 

Findings 

Jasmine. Jasmine was eager to share her mathematical work and contribute to mathematical 

discussions publicly for her classmates and teacher. For instance, Jasmine volunteered at every 

opportunity to demonstrate and describe her mathematical work for the class to observe. The 

teacher asked for volunteers to publicly share work during two different lessons, and during both 

Jasmine volunteered, and was selected to show her work. Additionally, Jasmine was attentive to 

her teacher throughout the lessons. She often gestured she was paying attention by taking notes 

and looking up to the board when the teacher was talking and writing. Jasmine responded both 

chorally and individually to questions the teacher asked throughout the lessons, and she was 

willing to ask her own questions when unsure of the mathematics or needed to clarify her 

understanding. Jasmine demonstrated her attentiveness to her teacher by gesturing in agreement 
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or disagreement to questions he posed. When the teacher asked students to raise their hand once 

they figured out the solution to an answer, Jasmine consistently raised her hand. Jasmine also 

volunteered to respond when the teacher asked for students to share their answers. Jasmine was 

active in a variety of ways in class and frequently engaged in constructing a mathematical 

Discourse (Moschkovich, 2003).  

Jasmine’s actions made apparent that she was actively willing to share her mathematical 

work and to engage in mathematical conversation with her teacher. For instance, when the 

teacher asked the class “What is a complementary event?”, Jasmine raised her hand and was 

selected to respond. The following conversation took place between Jasmine and the teacher: 

Jasmine: The opposite? Talking for the whole class to hear, while also moving things around 

in her binder, and sitting at her desk. 

Teacher: The opposite of what? Walks to stand in the center front of classroom, hands in 

pockets. You are right on track.  

Jasmine: Of what you don’t have. Puts notebook on the floor next to her desk and arranging 

her notes on her desk while talking. 

Teacher: Like give me an example. Leaning against the board and standing at the front of 

the classroom.   

Jasmine: Like if you have, like, a chance of grabbing 1/4th the opposite of 3/4ths so that like 

if I grab one marble and it’s red, orange, or blue. Whatever. But um, if I find the probability 

of that 1/4th but what I am not worried about is the compliment. Hands tucked under legs 

and leaning forward. 

Teacher: Right. So the probability of the complement event is the opposite or what is not 

currently. So like you were saying, let’s say I have a spinner A, B, C, and D. The probability 

of, it has 4 sections, the probability of spinning an A would be 1/4th. The probability of not 

spinning an A would be 3/4ths right? 

Jasmine: Nods her head in agreement. 

The teacher continued to elicit Jasmine’s thinking by posing additional questions for Jasmine to 

answer. Additionally, Jasmine’s teacher often selected her to share her answer even though many 

students may be attempting to volunteer a response. Jasmine’s teacher also used Jasmine’s 

responses at times as positive contrasts to responses from other students in the class, so 

Jasmine’s teacher thus positioned Jasmine as a capable mathematics student. Through both 
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Jasmine’s and her teacher’s discourses, positions, and storylines, Jasmine is occupying a role of a 

capable mathematics student with status (Cohen & Lotan, 1995) in this classroom. 

Zara. Although Zara often gestured she was paying attention to the teacher by taking notes 

and looking to the board when the teacher was talking and writing, she rarely responded to 

questions posed by the teacher and did not raise her hand to volunteer to share her mathematical 

work. When her teacher posed questions for students to respond verbally in chorus, Zara often 

looked down and wrote in her notebook rather than speaking. Zara does not respond to many 

opportunities to actively engage in public mathematical Discourses.  

Zara’s teacher attempted interacting with Zara, in part, by calling on her to share responses 

when Zara had not volunteered to do so. In the exchange below, the teacher posed a question to 

Zara without prior warning:  

Zara: Zara leans over her desk and looks at her notebook. Ummm… Zara continues to look 

through her notebook flipping the pages back and forth.  

Teacher: When I combine a complimentary event and its probability what should that equal? 

Zara: Looking back down at her notebook, flips the pages of her notebook, sits on her hands, 

and changes her body position in her seat. I don’t know.  

Teacher: Yes you do. It’s in there. Keep looking. 

Zara: Looks back down at her notebook, flips the pages of her notebook again. You get one-

whole. 

Teacher: One-whole. Nods in agreement with Zara. So just like Jasmine was saying, 1/4th 

and 3/4ths, that is one-whole. 

As this exchange ends, the teacher gives credit to Jasmine for Zara’s response and positions Zara 

as a student who had not been attentive to the previous instruction. After this interaction, Zara’s 

engagement started to shift and she became more vocal publicly in the classroom.  

Following the previous exchange, Zara raised her hand several times to be called on and 

other times she spontaneously shouted out when she had questions. Zara pushed back on her 

perceived positioning by the teacher, a second order positioning (Harré & van Langenhove, 

1991). For instance, when the teacher addressed the question of another student, Zara publicly 

shouted the following without raising her hand: 

Zara: Wait so how, I don’t get that either. Shouts this out to teacher, but publicly for the 

entire class to hear. 
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Teacher: So this little thingy means everything that is not 7. So everything that is not 7. So, 

all these are not 7. Or I can add all these up. And then all these are not 7 so I could add up 

those. And there are 30 of those. Because I know that 6 of them are 7. 

 Zara: Looking at teacher as he talks. Oh. So you just take 7 and just get rid of all the 7’s out 

of the whole box? Okay. Then looks back down at notebook.  

Zara’s active engagement picked up following the earlier teacher exchange as Zara continued to 

frequently shout out spontaneous questions. Additionally, Zara began to raise her hand to 

indicate her willingness to respond to teacher questions. For one such teacher question, Zara was 

initially the sole volunteer, but her teacher never called on her to respond. Thus, although Zara 

began as a more passive student, her class engagement transitioned during the class. However, 

her teacher passed up opportunities, such as selecting her from volunteering students, to position 

her as a capable student with status (Cohen & Lotan, 1995).  

Discussion and Implications 

In seeking to contribute to our understandings of the affordances and drawbacks of single-sex 

classroom spaces, our findings suggest that girls in middle grades mathematics single-sex 

classrooms construct mathematical Discourse through engaging in written, spoken, acted, 

listening, and interacted (Gee, 1999) mathematical Discourses (Moschkovich, 2003). Some 

students were positioned by the teacher and positioned themselves as active academic students, 

while others as passive students.  

Findings from this study are similar to other single-sex mathematics education studies (Che 

et al., 2012; Carter et al., 2014; Kombe, Che, Carter, & Bridges, 2016) which suggest further 

exploration of these classroom spaces, and in some cases no differences in evidence to support 

single-sex education versus coeducation. Just as in any classroom, mathematical Discourses 

varied and were constructed in a different ways. Findings from this study suggest these 

classroom settings do not seem to influence the ways students are constructing mathematical 

Discourse. 
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STEM Circles allow small groups of students to tackle an open-ended problem that has multiple 

possible approaches and no immediate solution, while allowing students to explore concepts 

before mastering specific vocabulary and principles. STEM Circles mesh well with research on 

teaching mathematics to emergent multilingual students because of their focus on inquiry-based 

interaction and STEM literacy. We examined the potential for our STEM Circle approach to 

incorporate content-area vocabulary while helping students learn interdisciplinary science, 

technology, engineering, and mathematics content. Are STEM Circles also effective for a family 

engagement program with multilingual students and their parents?  

 

During the fall of 2016, 4.9 million public school students were classified as English 

language learners by the National Center for Education Statistics (McFarland et al., 2019). As 

multilingual students become a larger proportion of the U.S. student body, multilingualism in the 

content areas has received increasing attention (Buxton & Lee, 2014). Emergent multilingual 

students possess knowledge of multiple languages and language registers as well as meaning-

making modalities that facilitate their participation in STEM contexts and activities—that is, the 

integration of science, technology, engineering, and mathematics (National Academies of 

Science, Engineering, & Medicine, 2018), including a complex mathematics discourse which 

involves multisemiotic reasoning (Hansen-Thomas & Bright, 2019). Yet despite the 

contributions emergent multilingual students bring to mathematics classrooms, many teachers 

feel ill-prepared and inadequately trained to help students develop English language proficiency 

while teaching mathematics content (Hoffman & Zollman, 2016). 

STEM Circles are one instructional approach mathematics teachers can use to help students 

develop English language proficiency and benefit all students in developing academic language, 

conceptual understanding, and meaningful skills. As a classroom activity, STEM Circles employ 

active learning and can serve challenging curriculum, multiple learning approaches, and an 

inclusive school environment (Suh, Hoffman, Hughes, & Zollman, in press).  

This study explored the potential of STEM Circles for engaging elementary-level emergent 

multilingual students and their families in STEM exploration in an informal learning 
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environment. The study was guided by the following research question: How do STEM Circles 

promote multilingual family engagement at the elementary level?  

Literature Review 

Understanding content area discourse is essential for learning and engagement with complex 

STEM topics (Reyes, 2008). Academic discourse becomes most accessible when connected to 

social language (Ryoo, 2015). Inquiry-based STEM instruction has proven effective with 

emergent multilingual students in numerous studies (Lee & Buxton, 2013; Mercuri & Mercuri, 

2019; Stoddart, Pinal, Latzke, & Canaday, 2002). 

Research suggests learning is constructed through active discovery (Bruner, 1966; Deering et 

al., 2016; Sansone, 2018) and is most effective when scaffolded within constructive sociocultural 

contexts (Vygotsky, 1978). A hands-on, problem-solving activity with reflection invites students, 

families, and educators to participate in academic and STEM Discourses (Gee & Hays, 2011). 

Providing hands-on classroom opportunities and expressing STEM academic concepts in 

multiple ways are positively associated with English language learning and also are 

recommended practices for mainstream classrooms regardless of students’ language proficiency 

(Hoffman & Zollman, 2016). 

STEM Circles are planned classroom tasks in which small groups of students tackle an open-

ended problem that has multiple possible approaches and no immediate solution (Suh et al., in 

press). Our STEM Circles approach is derived from Math Circles (Kennedy & Smolinsky, 2016). 

STEM Circles’ objectives and procedures mesh well with research-support practices for teaching 

science and mathematics to emergent multilingual student because of the Circle’s focus on 

inquiry-based interaction and STEM literacy (Hoffman & Zollman, 2016; Moje, 2015; Zollman, 

2012). STEM Circles follow a learning cycle that allows students to explore concepts before 

mastering specific vocabulary and principles (Lawson, 2009). 

Although all students can benefit from increased parental involvement, family engagement 

efforts are especially necessary for supporting multilingual students to connect their home and 

school knowledge given the linguistic and cultural differences which can exist between these two 

spaces (Shanahan & Echevarria, n.d.; Tarasawa & Waggoner, 2015). Strategic school-family-

community partnerships have been linked to increased academic achievement and positive 

attitudes towards school, among other advantages (Philadelphia Education Research Consortium, 

2016). Family engagement is critical for incorporating academic language into conversations in 
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the home language and supporting students’ academic English skills (Philadelphia Education 

Research Consortium, 2016; Shanahan, & Echevarria, n.d.). To successfully promote meaningful 

family engagement, STEM Circles must include culturally and linguistically appropriate 

practices.  

Methodology 

This study utilized a multiple case study design (Patton, 2002; Yin, 2014) to explore 

multilingual families’ engagement with STEM education at a “multilingual STEM family night” 

held at three elementary schools in two different southeastern Indiana school districts. Students 

formally identified as English language learners (ELLs) range from almost 9% to 37% of each 

school’s student population. The number of multilingual families is higher, though, as the school 

where 37% of students receive English language services also identifies over 51% of its students 

living in Spanish-speaking households. The two schools with the highest number of English 

learners are in a district which saw its ELL population increase over 500% from 2005 to 2015 

and currently provides services to over 1,100 students speaking 35 languages. The vast majority 

of those emerging multilingual students (over 900) speak Spanish at home, with Arabic and 

Mandarin being the next most common languages. One of our participating schools serves 

students from 18 different home languages and from 31 countries of origin. All three of the 

participating schools receive federal Title I funds, and percentages of students receiving free and 

reduced lunch range from 33% to 79% (National Center for Education Statistics, 2019). 

Over 150 students and their family members attended the three events. One event was held at 

each school. For our first event at the school with the smallest percentage of identified English 

language learners (9% of the student population), we advertised the event specifically to 

multilingual families and sent invitations only to parents of students identified as English 

language learners. For the second and third event though, we opened the event to all students and 

families at the school administrators’ request. Flyers and invitations for all three events were 

provided in both English and Spanish. 

Events at each school followed the same agenda with the same activities. As families entered, 

we provided food and assigned parents to sit with other parents and students to sit with other 

students. Similarly, school administrators were assigned to sit as a separate group. The limited 

number of attending teachers chose to help facilitate the activities instead of participate in the 

STEM activity. Each group received a packet of the same materials to complete the same task. 
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The students, in particular, enjoyed competing with the adult groups. The parents enjoyed 

working separately from their children (so the adults could be silly, make mistakes, etc.). In each 

instance, the student groups outperformed the adult groups. While we had interpreters on site, we 

deliberately assigned parents to sit with parents of different languages to model that science and 

mathematics can be accomplished with limited verbal communication. 

The STEM activity we did was a variation of the “marshmallow challenge”: the task was to 

build the tallest freestanding tower out of spaghetti, masking tape, and string, with a 

marshmallow on top. In order to adapt this task for a STEM Circle activity, we only outlined 

minimal rules and prompted participants to determine what questions to ask within their groups.  

After the activity, all participants joined a large-group reflection discussion in which we 

talked about what science and mathematics are and are not. For example, solving a real-world 

problem such as using geometry to build a tower, connects mathematics to science and to 

engineering. However, timed basic fact tests are not mathematics. We gave out a “take-home” 

bilingual sheet of advice for reducing math anxiety, supporting a growth mindset for learning, 

and expressing positive expectations to their children. We asked parents and guardians to place 

this take-home sheet on their refrigerators.  

Data collection included pre- and post-event parent surveys, separate administrators’ surveys, 

researchers’ observational data, and video recording of the activities. The survey asked for the 

family’s native language, their definition of STEM, their beliefs about their child’s knowledge 

about STEM, their interests in knowing how to support their child’s STEM learning, and their 

academic hopes and expectations for their child.  

The researchers kept observational data, including notes about how parents engaged with 

each other within their groups during the activity and debrief conversation. From the data, the 

researchers created individual cases of family engagement at each school. The researchers then 

compared cases to establish generalizations across the three sites, triangulating findings from the 

observational, parent surveys, and administrators’ survey data. The researchers kept observation 

notes from conversations with the administrators who were also surveyed based upon their 

experiences hosting STEM family engagement events and their perceptions of additional 

resources needed to expand STEM family engagement for multilingual students and families.    
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Results 

This exploratory study engaged the research question, “How do STEM Circles promote 

multilingual family engagement at the elementary level?” In this paper we present only the cross-

case analysis related to the dominant themes of administrative perceptions and support, and 

family investment and involvement. Event attendance, survey responses, and administrator 

feedback all indicate that multilingual parents see a need for strong STEM education and were 

interested and engaged in supporting their children’s STEM learning. 

Survey item responses were coded through thematic analysis (Braun & Clarke, 2006), which 

is beneficial for survey data analysis as it allows researchers to examine emergent themes beyond 

those present in the survey questions (Tanaka, Parkinson, Settel, & Tahiroğlu, 2012).  Responses 

to each open-ended item were combined, and the researchers independently coded for broad, 

inductive themes and then more specific themes within the codes. The unit of analysis was each 

school. We report below on survey data from parents and school administrators. Although we 

would have liked to collect data from teachers as well, teachers typically do not attend evening 

events, and the few teachers present at our events were already engaged in facilitating the events 

with us. 

Administrators at all sites identified STEM learning and family involvement as the two 

largest needs related to facilitating STEM family engagement. None of the schools offered 

students sustained engagement or learning in a STEM environment. Although students received 

instruction in both mathematics and science as a part of their general curriculum, they did not 

have opportunities to engage in interdisciplinary STEM learning. Administrators at the schools 

described their interest in increasing students’ exposure to STEM. Although two of the surveyed 

administrators had STEM activities built into their students’ weekly schedule, only one surveyed 

administrator described hosting a STEM engagement night at her school.  

Additionally, administrators at the schools described parental willingness to attend as 

essential for family engagement and student learning. Surveyed administrators also noted the 

importance of family support for STEM learning. These administrators concurred, noting how 

school STEM events are essential to family engagement. As one administrator noted, “If the 

families can get on board with STEM activities and the mindset, then the kids will be more 

willing to try” (October 4, 2019). However, administrators held a widely shared belief that 

parents do not engage if they do not believe an event is worthwhile or if they do not understand 
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STEM, suggesting that lack of parental knowledge of STEM might prevent family engagement 

in STEM Circles and STEM learning.  

This study identified benefits in offering STEM activities beyond the classroom that parents 

can attend. Parents reported limited previous understanding of STEM as a content area. Many 

first learned the STEM acronym from the event flyer but were unable to articulate how their 

students engaged in STEM learning. Despite their emergent understanding of STEM, attending 

family members described themselves as committed to supporting their children’s education and 

enthusiastically participated in the activity themselves to understand the integration and 

applications of STEM content.  

The post-event survey reported the parents seeing STEM education as more hands-on, 

enjoyable, and problem-based than expected. For example, one parent reported, “I think my 

children have viewed it differently because I think they view it funner.” Additional parent 

feedback included mentioning that the learning process was as important as the “answer.” 

Parents also valued communicating in a team, allowing mistakes, and persevering as important 

aspects of learning STEM. No parents reported having previous experience in school learning 

that involved communication, problem solving, perseverance, or modelling. They liked the 

various role models for the students in the room, in terms of gender and ethnic diversity of 

presenters. Finally, they appreciated the “take-home” bilingual sheet of advice for reducing math 

anxiety, supporting a growth mindset for learning, and expressing positive expectations to their 

children. 

Our STEM Circle activity allowed parents to be presented with a non-standard problem that 

they could tackle. Rather than interpreting procedures or focusing on word walls, parents--and 

their students--could directly and immediately engage with real-world STEM content through 

hands-on activities. 

Discussion 

Engaging emergent multilingual students (and parents) in mathematics can be daunting—

particularly when some students are still developing English language proficiency while teachers 

are focusing on teaching the mathematics concepts, processes, and content. We want to assure 

parents and educators that students’ cognitive “sense-making”—in any language—develops their 

STEM literacy skills as well as their academic identities. We modelled a STEM Circle approach 

as one active-learning method to engage families, develop language skills among emergent 
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multilingual students, and help all students persevere in solving problems and constructing viable 

arguments (Suh et al., in press). 

Although this study was limited by self-selection bias of parents who chose to attend, we still 

feel that family STEM Circles are a nonthreatening way to demonstrate for school faculty (and 

parents) the research on how students can learn mathematics effectively. STEM Circles provide a 

model of the “you do, we do, I do” approach that differs from traditional teacher-directed 

instruction. Based on these case studies, we observed that strategies, such as STEM Circles for 

developing English language proficiency, are effective for educators to support all students in 

developing academic language, conceptual understanding, and meaningful skills--as well as 

develop family engagement. Our limited results suggest that STEM Circles may also lead to 

family engagement discussions about developing academic English language proficiency along 

with mathematical conceptual understanding and meaningful skills. These are areas worthy of 

further research. 
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With the increasing push to graduate students in a timely manner, mathematics departments 

have been under pressure to create and maintain inclusive mathematics classes that do not 

create a "bottleneck" for students.  At the University of Nevada, Las Vegas, the Liberal Arts 

Mathematics course was redeveloped to be more inclusive by tailoring the course content and 

structure.  Specifics for the course and the effects on pass rates before and after implementation 

will be examined. 

 

The University of Nevada, Las Vegas (UNLV) is an urban research institution in the heart of 

Las Vegas, Nevada.  Fall 2018 boasted an enrollment of over 30,000 students, with about 60% 

minority – ranking it the 4th most diverse campus in the nation by the U.S. News and World 

Reports (Campus Ethnic Diversity, 2019).  The Department of Mathematical Sciences (DMS) 

offers a full range of mathematics courses, one of which is titled “Fundamentals of College 

Mathematics” (FCM) and is intended for students enrolled in the Arts and Humanities.  UNLV 

has a general education core and requires a minimum of three credits of Mathematics for all 

students, of which FCM is the “lowest bar” or the course that requires the lowest entrance 

requirement while still fulfilling the core.  Up until its revision in Fall 2017, the course was a 

“catch all” of unrelated mathematical concepts that was largely unpopular with the students and 

departments across campus.  Between Fall 2016 and Spring 2019 there were on average 650 

students enrolled in the course per term, grouped in sections of 25 to 45 students.  The course 

was (and is) taught mostly by part time instructors and graduate students.  To enter the course, a 

student needed to demonstrate a minimum set of mathematical competences, as determined by an 

appropriate SAT or ACT score, or the completion of a remedial mathematics course in 

elementary algebra.   

The largest driving factor for the redevelopment of FCM was the fact that it was so 

unpopular, as reported to the DMS administration during meetings with other department chairs 

across campus.  In addition, in 2012 there was a change in the state funding formula (New 

Model, 2019) and departments were left scrambling to assist those students not progressing 

towards graduation.  The dissatisfaction felt about the course across campus was now coupled 

with rumblings that math was often the cause for delays in graduation attainment.  At that point, 
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individual departments began to discuss creating their own math requirement, or perhaps even 

eliminating the math requirement altogether.  As such, it was well past time for the DMS to 

remedy these problems with FCM. 

Development of the Course 

In order to develop a course that the university could stand behind, it was essential to get 

faculty and administration input before any changes were even considered.  All faculty and staff 

were provided the opportunity to complete an online survey, created by the author and 

disseminated through the university’s survey tool.  The survey was aimed at determining their 

satisfaction with the current FCM course and providing input on what they would like for it to 

contain. Over 100 faculty and staff across all disciplines completed the survey.  To support the 

claim that FCM was largely unpopular, 41% of respondents were either “somewhat” or 

“extremely” dissatisfied with FCM, and only 16% were “somewhat” or “extremely” satisfied.  

When asked about the satisfaction level of their students, respondents indicated a dissatisfaction 

level of 75% as reported to them by their students.  Written responses indicated that students felt 

FCM included topics they would “never need.”  In addition, administrators expressed frustration 

with how mathematics (in general) was a block for student progression to graduation – if 

students could not enter into or succeed in FCM in a timely manner, they believed it resulted in 

the student not completing their degree program. 

This is supported in research on remedial mathematics education.  According to a statistical 

report by the U.S. Department of Education, remedial students graduated at a rate of 30-55%, 

whereas nonremedial student’s attainment rates were 67% (Chen, 2016).  In the same study, 

remedial students had a higher probability (11 to 12% higher) of leaving college by their second 

year as compared to nonremedial students (Chen, 2016).  While FCM is not remedial, the 

process of qualifying for and then subsequently completing the course proved just as difficult for 

our student body.  One survey respondent went so far as to say, “the math requirement is the 

single biggest obstacle to graduation for our students.”  The survey and supporting research 

indicated the importance for a redeveloped course that maintains mathematical integrity but is 

easier to enter and successfully complete. 

Because FCM is the “low bar” for the general education core, it is most often populated by 

students who do not need to go further in the Mathematical Sciences, such as Fine Arts, Health 

Science, Hotel, Liberal Arts and Urban Affairs.  These departments were specifically targeted 
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and interviewed.  While survey respondents indicated desired objectives for the course, it was 

hoped that interviews with the main audience for FCM would help solidify which of these 

objectives were selected (see the Implementation Section for a list of selected objectives).  

During these interviews it also became apparent that content was not the only issue of 

importance for the university community – the teaching style and methods of assessment were all 

important to FCM’s redesign. 

Development of Course Structure and Objectives 

Over 86% of survey respondents indicated they “strongly agree” that the mathematics should 

be embedded in other, real world problems.  Given survey and interview preferences for 

connected topics and real-world applications, it was decided that FCM would expose students to 

overarching ideas.  The course was designed around these ideas (or themes), and the concepts 

and skills necessary to study each theme were developed within that framework.  Though there 

were initially four themes, the last (math as it relates to the fine arts) was optional for time 

consideration and has since been omitted.  This structure was an effort to make apparent the 

direct application of mathematical concepts to real-life situations.  The three themes and an 

abbreviated list of their associated topics are as outlined in Table 1. 

Table 1  

Themes and Associated Objectives 
Theme 1: Using Mathematics to Reason and Answer Questions 

Standardized units, unit conversion, unit analysis, four step problem solving process, outcome and 

event, theoretical probability, relative frequency probability, calculating probabilities, law of large 

numbers, fallacies or deceptive arguments, sets and elements, Venn diagrams, inductive and deductive 

reasoning, validity 

 

Theme 2: Financial and Practical Numeracy 

Percentages, significant digits, rounding, relative error, budgeting, managing expenses, simple and 

compound interest, APR, APY, savings, investments, loans and mortgages, credit cards 

 

Theme 3: Mathematical and Statistical Modeling 

Statistical studies, frequency tables, bar graphs, pie charts, histograms and line charts, correlation, 

measures of central tendency, distributions, symmetry, skewness and variation, quartiles, standard 

deviation, normal distribution, 68-95-99.7 rule, linear and exponential models, half-life and doubling 

time. 

 

While some of the topics from the original FCM remained (statistics, consumer math and 

financial management), some were disregarded (parts of set theory, and geometry).  Moreover, 

the course “felt” very different because topics were used to answer overarching questions within 

each theme.  For example, in Theme 2 students are presented with a “life scenario” and are asked 
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to use mathematics to determine whether they can afford to buy a home, and if so where should 

it be and how much should it cost.  Monthly bills, financing, auto ownership, whether to marry 

and have children, how to care for children… all lifestyle choices are considered and determined 

using the skills presented in Theme 2. 

Choosing Specifics – Pedagogical Strategies and Assessment 

From the survey it was clear that in addition to content, perhaps more concerning was 

teaching style and assessments.  In the new FCM course, learning with understanding is at the 

forefront of the classroom environment.  Survey responses indicated at a rate of 95% that “it is 

more important for students to have problem solving skills as compared to being able to 

memorize or use specific math facts or formulas.”  This focus away from rote procedures and 

memorization is also supported in research.  When a student merely memorizes facts or 

procedures without understanding, they are often not sure when or how to use what they know 

(Bransford, Brown, & Cocking, 1999).  According to the NCTM, procedures that used to be 

important to mathematical learning are now easily computed with technology, so more attention 

can be paid to conceptual understanding (NCTM, 2000).  In fact, the previous FCM did not even 

allow for the use of any technological tools – a policy that was quickly overturned for the new 

FCM course which now allows for the use of a scientific calculator and statistical software. 

In order to create an environment focused on investigative learning, each theme contained 

one major project and many “mini projects.”  According to the NCTM, classroom discourse and 

social interaction is an effective tool to help students learn and make connections (NCTM, 2000).  

Allowing students to talk about their strategies provides an opportunity for them to develop 

procedural fluency and conceptual understanding (NCTM, 2000).  As such, all projects in the 

course were collaborative in nature.  Instead of being exclusively lectured to, students were 

provided with the opportunity to work in groups and reason through the material.  Interestingly 

enough, the investigative approach with little to no lecture was a struggle for students and 

instructors alike – it seems lecturing is so ingrained in our community that its complete 

abandonment created distress and fear.  After the first few weeks of classes, many instructors had 

to implement some type of lecture to put their students at ease.  Currently there is about a 2:1 

ratio of lecturing to investigative learning.  In my opinion this is not ideal, and it is hoped the 

culture will slowly shift over time.  The effects of time spent lecturing is further discussed in the 

implementation section. 
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Another complaint addressed in the survey was the apparent disconnect between the 

mathematics being learned and the mathematics being assessed.  Some comments were, 

“students are not prepared for the final exam,” and “the homework builds a false sense of 

understanding.”  In the redesigned FCM course, assessments are based on a mixture of 

procedural questions, open-ended questions and performance tasks.  According to the NCTM, 

this mixture of assessment types is necessary, and they further indicate that assessments should 

be relevant to the information students need to know (NCTM, 2000).  The previous FCM course 

had an overreliance on formal paper-and-pencil tests driven by demonstrating procedures.  In the 

new FCM course students are provided with multiple approaches to show what they are learning.  

In addition, all sections of the course provide students with a set of learning objectives and 

specific guidelines for what will be assessed, so there is now clear communication for what is 

expected. 

Implementation of the Course 

The redesigned FCM was first offered to students Fall 2017.  The previous two terms (Fall 

2016 and Spring 2017) there were 1,328 students total for the academic year with an average of 

16.5 sections per term containing 40.4 students.  From Fall 2017 through Spring 2019 there was 

an average of 1,305 students per academic year with an average of 19 sections per term 

containing 34.4 students.  Student composition and the pool of instructors used throughout the 

implementation has been consistent.  Of the survey respondents, 75% supported a maximum of 

30 students per class.  As such, the new FCM class saw a slight decrease in class size, an 

argument made to administration and thankfully supported.  There was one coordinator who 

oversaw implementation, and all instructors attended regular meetings throughout the term to 

discuss how things were going, support the instructors in the new learning environment, and 

make appropriate changes.  It should be noted that there was originally an online course.  This 

was offered Fall 2017, but since it could not make use of the collaborative nature of the projects, 

it was a reflection of the old FCM.  Eventually it was dropped from the schedule of offerings.  

Data on student performance was collected for two full semesters prior to implementation as well 

as each full semester the course had been offered. 

Figure 1 displays the percentage of students earning grades A-F, along with the percentage of 

students who withdrew from the course (W) and audited the course (AD).  According to Figure 

1, for those students who chose to withdraw or audit, there is only a slight difference between the 
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old and new FCM.  At first one would expect that if the level of satisfaction went up, the number 

of drops and audits would decrease.  However, students seem to persevere at the same rate, 

indicating that perhaps the choice of withdraw or audit has more to do with life circumstances 

then it does course satisfaction. 

 

Figure 1.  Comparison of Student Grades for Previous and Newly Designed FCM 

A chi-square test of association between class-type (row factors of Old FCM and New FCM) 

and result (column factor of Pass and Repeat, pass being grades A-D and repeat being a grade of 

F, W or AD) yields a corresponding p-value of 2.23 × 10−7, which indicates the data strongly 

supports that there is an association between the class-type and result.  That is, the newly 

redesigned FCM has a significantly higher pass rate than the old FCM. 

Table 2 indicates the pass and repeat rates for both the new and old FCM.  Passing is again 

defined as a grade of D or higher.  Because the course is terminal, and is not required as a 

perquisite for any other course, a grade of D typically satisfies the requirement for a student’s 

degree program.  Repeat is defined as F, W and AD, each of which implies the student must 

repeat the course to receive credit. 

Table 2  

Comparison of Pass Rates for new and old FCM 

 Pass Rate Repeat Rate 

 Count Percent Count Percent 

Old FCM 963 77.6 278 22.4 

New FCM 2095 84.5 383 15.5 
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It should be noted that one could consider other thresholds of pass and repeat.  There are perhaps 

some departments that require a minimum GPA or minimum standard for all courses.  However, 

if we consider passing as C or higher, and repeat as D, F, W or AD, the new FCM still has a 

significantly higher pass rate of 78.0% as compared to 61.4% for the old FCM. 

Equally important to student performance is student satisfaction.  Interestingly enough, each 

term the new course is offered, students participate in and analyze data on their own performance 

and satisfaction.  While UNLV requires formal student evaluations at the end of each term, it is 

personnel related and not part of our analysis.  This survey was made by the author, in 

coordination with the instructor team, and disseminated through UNLV’s survey tool.  Instead, 

we analyzed the student surveys to determine satisfaction (unfortunately these surveys were not 

part of the old FCM course).  In the survey, they were asked about their level of satisfaction with 

the projects and mini projects, as well as their overall evaluation of the course.  This anonymous 

student survey is done online towards the end of each term, and for all terms there was a 

response rate of 65%.  While participation is required, student information is self-reported and 

non-identifiable.  Table 3 summarizes the data reported by students from Fall 2017 through 

Spring 2019 for the indicated questions. 

Table 3  

Percent of level of student satisfaction for the new FCM 
 +3 +2 +1 0 –1 –2 –3 

Level of satisfaction with the mini projects 23.6 35.1 16.8 12.2 5.5 2.8 4.0 

Level of satisfaction with the major (theme)  

     projects 

22.9 32.8 16.3 13.0 7.1 3.2 4.9 

Level of satisfaction with the entire course, in  

     general 

29.9 28.3 13.7 10.1 7.8 5.5 4.6 

Note. +3 Extremely satisfied, +2 Moderately satisfied, +1 Slightly satisfied, 0 Neither satisfied nor 

dissatisfied, –1 Slightly dissatisfied, –2 Moderately dissatisfied, –3 Extremely dissatisfied 

 

As indicated in Table 3, over 70% of all students who responded indicated they were satisfied 

(slightly, moderately or extremely) in each of the above items (mini projects, theme projects and 

the course in general) and less than 20% indicated dissatisfaction (slightly, moderately or 

extremely).  While we strive to have higher satisfaction levels, we have to appreciate the context 

– these students are typically not drawn to mathematics, and for over two-thirds of them to be 

satisfied with their math class is noteworthy. 

In addition, as indicated previously, there was much resistance to the “little to no” lecture 

format that were considered to be best practices for this audience.  Despite our best efforts, 
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students are self-reporting that their instructors are lecturing quite often.  Fall 2017 was our best 

effort with only 13.9% of students reporting their instructors were “always” lecturing.  

Consolidating all terms, 68.7% of students report instructors lecturing either “most” or “all” of 

the time.  Of those students, 77.2% were satisfied (slightly, moderately or extremely) and 6.8% 

were dissatisfied (slightly, moderately or extremely).  In contrast, for the 31.1% of students that 

self-report their instructors lecturing “half the time” or even less, only 52.5% were satisfied and 

32.9% were dissatisfied.  As much as we would like to spend much of our class time 

investigating and problem solving, we will have to strive to create an environment where this 

creates less apprehension for the student.  

Re-Redesign of the Course 

According to the NCTM, it is crucial to constantly reflect on and refine instructional practice 

(NCTM, 2000).  As such, the new FCM course is always undergoing revisions and changes, 

particularly as it relates to how the students are connecting to the content.  In addition, there are 

outside influences that affect how we structure our course offerings.  One of these influences 

includes recent mandates by the state to eliminate remedial coursework and instead offer co-

requisite courses.  This implies that students who do not qualify for entrance into FCM would be 

provided with a class that includes “real time” prerequisite material.  In addition, there are 

several degree programs at UNLV that are predominately offered online, and these departments 

are requesting a re-instatement of the online version of FCM, which had been discontinued.  

These outside influences will eventually play a role, but are only a part of what we as instructors 

need to continue to do to ensure the quality and effectiveness of our courses. 
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One bridge between arithmetic and algebra is making and justifying generalizations. This 

research study focuses on how middle-grades students’ concept of number supports 

generalizations of linear patterns. Students whose reasoning about number was limited to 

constructing composite units (i.e., units of units) in activity were limited to factual algebraic 

thinking. Students who assimilated with composite units, which is more sophisticated than 

constructing composite units in activity, were supported in factual and oral algebraic thinking. 

Analysis uses the students’ composite units to model their generalizations.  

 

Literature Review 

The study of algebra comprises a large portion of middle and high school mathematics. Cai 

and Knuth (2011) called it a “gatekeeper” (p. vii) to higher mathematics and urge researchers to 

develop a more thorough understanding of how student thinking transitions from arithmetic to 

algebra. Russell, Schifter, and Bastable (2011) identified one such aspect of this transition as 

making generalizations. This makes generalizing one manner by which middle-grades students 

may begin to reason algebraically.  

Radford’s (2011) research echoes this idea by highlighting the types of non-symbolic 

reasoning that are and are not algebraic. These are commonality, generalizing, factual algebraic 

thinking, and oral algebra. Identifying a commonality and generalizing the commonality to the 

next term are not algebraic in nature because they lack indeterminacy. Factual algebraic thinking 

involves extending a pattern by applying a rule to a larger, explicitly calculated term. For 

example, calculating the first three terms of a pattern and then the 100th term. This requires 

students to reason abstractly about unknowns, making it the first instance of algebraic reasoning 

(Radford, 2011). Finally, oral algebra, or verbalizing a pattern in reference to an unknown term, 

makes an unknown explicit, thereby making it the most sophisticated (Radford, 2011). 

Symbolic representation of a pattern is more sophisticated than oral algebra. Once symbols 

are introduced into algebraic reasoning, many misconceptions about variable emerge. 

MacGregor and Stacey (1997) categorized middle-grades students’ misconceptions. Their 

categories include thinking of variables as an alpha-numeric code and using different letters to 

represent related unknowns. The present study examines how middle-grades students’ concept of 

number supports their non-symbolic and symbolic generalizations, and to what extent variable 
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misconceptions are applied when students introduce symbolic notation. Building on existing 

literature, this research study will interpret students’ generalizing and conceptions of variable in 

terms of their concepts of number. 

Conceptual Framework 

Students’ concept of number will be framed using the number sequences, which is a neo-

Piagetian hierarchy of concepts of number that were developed in research with elementary 

children (Steffe & Olive, 2010). They include the initial number sequence (INS), tacitly nested 

number sequence (TNS), explicitly nested number sequence (ENS), and generalized number 

sequence (GNS). The advanced tacitly nested number sequence (aTNS) was added to the 

hierarchy by Ulrich (2016b) in her research with middle-grades students, and it falls between the 

TNS and ENS. In general, “children use their number sequences to provide meaning for number 

words” (Steffe & Olive, 2010, p. 27), and the number sequences are based on units coordination, 

among other mental constructs. This research will focus on TNS, aTNS, and ENS students.  

Tacitly Nested Number Sequence (TNS) 

TNS students construct two levels of units, or composite units, in activity, meaning that they 

immediately interpret number words, such as seven, as seven individual units of one. Then, in 

mental activity, TNS students can construct a composite unit of seven, implying they chunk the 

seven units into one unit of seven (Steffe & Olive, 2010). This supports students in 

conceptualizing seven as a composite unit that can be transposed to represent a counting 

sequence from 23 through 29, for instance.  

Advanced Tacitly Nested Number Sequence (aTNS) 

Students construct an aTNS when they assimilate with composite units (Ulrich, 2016b), 

meaning they immediately perceive of numbers such as seven as a single unit containing seven 

units (Ulrich, 2016a). Assimilating with composite units implies aTNS students can construct a 

third level of units in activity, meaning aTNS students can construct 21 as three units, each of 

which contain seven units, for instance. The third level of units decays following activity, 

implying that only the composite unit is material for reflection (Ulrich, 2016a). However, this is 

more sophisticated than TNS students, for whom the composite unit decays following activity. 

Explicitly Nested Number Sequence (ENS) 

ENS students also assimilate with composite units but can additionally disembed. 

Disembedding is the ability to imagine a unit being removed from the composite unit without 
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destroying either of the units (Steffe & Olive, 2010). For example, if asked, “2 plus what makes 

7?” ENS students can conceive of a composite unit of seven as containing a composite unit of 

two, and a composite unit of unknown quantity. Then, they can mentally disembed the composite 

unit of two from seven and compare the two and seven to find that the unknown is five. For 

students who do not disembed (i.e., TNS and aTNS students), mentally removing a unit of two 

from seven would destroy at least one of the composites, leaving them with no material for 

reflection.  

Units Coordination in Algebra  

Hackenberg (2013) has modeled algebraic reasoning based on students’ units coordination. 

On the border problem (Figure 1), a student who constructed composite units in activity, as TNS 

students do, found the number of squares on the border of a 10-by-10 grid by adding 10 + 10 +

8 + 8, but did not verbalize the relationship between 10 and 8. Hackenberg (2013) attributed this 

to the students’ not disembedding, which limited him from mentally removing a composite unit 

of 8 from a unit of 10 and reflecting on the relationship between the two quantities. Although this 

student did not represent his result symbolically, Hackenberg hypothesized that he may have 

written 𝑥 + 𝑥 + 𝑦 + 𝑦 because not disembedding would preclude him from relating x and 𝑥 − 2.  

 

 

Interviewer Question: Without counting one by one, and without 

writing anything down, can you describe a method for finding the 

number of squares on the border of this 10-by-10 grid? 

Follow-up Questions: Can you use that method to find the number of 

squares on the border of a 6-by-6 grid? A 100-by-100 grid? 

How would you explain to your math teacher your method for finding 

the number of squares on the border of any square grid? 

Can you write an expression to represent the number of squares on the 

border of an n-by-n grid? 

Figure 1. The border problem (problem 1; modified from Hackenberg, 2013). 

 

Hackenberg, Jones, Eker, and Creager (2017) posit that difficulty related to operating on 

unknowns can be related to units coordination. Specifically, to conceive of variables as 

unknowns is supported by composite units. The present research study examines how middle-

grades students generalize unknown quantities, symbolically and non-symbolically, and uses the 

number sequences to model this reasoning. The number sequences are used because they are 
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based on students’ units coordination but also distinguish between two groups of students who 

assimilate with composite units – aTNS and ENS students. This study specifically asks, what are 

the similarities and differences in TNS, aTNS, and ENS students’ non-symbolic and symbolic 

generalizations?  

Methods 

This study examined the generalizing of 14 students in grades six through nine, all within one 

school system in the United States. Students participated in two clinical interviews that lasted 

approximately 45 minutes each. First, the interviews examined students’ levels of units 

coordination and attributed a number sequence to each student. Questions and methods of 

analysis were drawn from Ulrich and Wilkins (2017). Second, the interviews elicited 

generalizations using 3 problems (see Figure 1 for problem 1). On problems 2 and 3, students 

were shown a pattern of blocks in which the number of blocks was two more and six more than 

the figure number, respectively. Students were asked to extend, verbalize, and symbolically 

represent the patterns.  

Results 

Table 1 shows the results of students’ generalizing. Greyed cells indicate 50% or more of 

students in that group demonstrated the specified reasoning. All TNS students demonstrated 

factual algebraic thinking, and one demonstrated oral algebra on one problem. aTNS students 

demonstrated factual and oral algebraic thinking, but no more than half wrote symbolic 

expressions on any problem. ENS students demonstrated factual algebra, oral algebra and 

symbolic representation. On problem 1, students used any of three methods. These methods were 

algebraically equivalent to 2𝑛 + 2(𝑛 − 2), 𝑛 + 2(𝑛 − 1) + (𝑛 − 2), and 4𝑛 − 4. 

 

Table 1 

Numbers of Students who Generalized Relationships on Problems 1, 2, and 3 

 Factual Algebraic Thinking Oral Algebra Symbolic Representation 

 1 2 3 1 2 3 1 2 3 

TNS 1/2 2/2 2/2 1/2 0/2 0/2 0/2 0/2 0/2 

aTNS 6/6 5/5 6/6 6/6 5/5 6/6 2/6 2/5 3/6 

ENS 6/6 4/4 5/5 6/6 4/4 5/5 6/6 4/4 5/5 

Note. One aTNS and two ENS students did not attempt problem 2 due to time limitations. One of the two ENS 

students who did not attempt problem 2 also did not attempt problem 3 due to time limitations. 

 

 



38 
Proceedings of the 47th Annual Meeting of the Research Council on Mathematics Learning 2020 

TNS Students’ Generalizing Behaviors 

Tabitha demonstrated factual algebraic thinking on all problems and oral algebra on one. She 

calculated the number of squares on the border of a 100-by-100 grid, indicating factual algebraic 

thinking, and she used a method equivalent to 2𝑛 + 2(𝑛 − 2). She then verbalized that method 

for finding the number of squares on the border of any grid, indicating oral algebra. She said:  

You could still subtract the top part by 2 and you could get the side length. … And then you 

would add the top and bottom part together, and once you get that you would add it by the 

side part and then after you do that you would do the second side.  

Tabitha refers to the horizontal side length as the “top part” and says that to find the length of the 

vertical side she would subtract two. Then, she would sum the horizontal and vertical sides.  

Tabitha’s generalizing was the more sophisticated of the two TNS students, although she was 

still unable to engage in oral algebra on problems 2 and 3. When attempting to verbalize, both 

TNS students applied recursive reasoning on problems 2 and 3, explaining that to find the 

number of blocks in any figure requires the number of blocks in the preceding figure. Despite 

calculating numerical examples explicitly, neither student could verbalize the explicit pattern. 

aTNS Students’ Generalizing Behaviors 

All aTNS students demonstrated factual and oral algebraic thinking on all problems. About 

half represented each problem symbolically (Table 1). On the border problem, four aTNS 

students verbalized 2𝑛 + 2(𝑛 − 2) and one verbalized 𝑛 + 2(𝑛 − 1) + (𝑛 − 2), but none 

represented these methods symbolically. Three aTNS students verbalized 4𝑛 − 4, and two 

represented it symbolically.  

A poignant difficulty for aTNS students in symbolic representation was relating the given 

side, n, to the given side minus the corners. Alex verbalized and attempted to symbolically 

represent 2𝑛 + 2(𝑛 − 2) but when he could not, he generated 4𝑛 − 4 instead. Alex reasoned: 

Can it be, like, 𝑛 + 𝑛 + 𝑛 + 𝑛? No, because of this [points to a corner]. … You would be 

adding 1 extra, I think. Yeah. I could do 𝑛 + 𝑛 [slides his finger across the horizontal sides], 

but then these [points to a vertical side] would have to be different. So I could express that 

better. [Writes 𝑛 + 𝑛 + 𝑏 + 𝑏.] … I want to say use a different variable, but it has to be a 

certain amount, number, in here, too. If you do 𝑛 + 𝑛, you might be able to subtract, um, 4? I 

want to say 𝑛 + 𝑛 − 4, and then you could just do the sides together. 𝑛 + 𝑛 − 4 + 𝑛 + 𝑛.  
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Alex expressed awareness that the sides are related when he stated “it has to be a certain 

amount,” meaning b has to have a certain relationship to n. Alex consistently subtracted two 

from the given side in each earlier numerical example and verbalized this relationship, but did 

not represent it symbolically. To resolve this perturbation, Alex used an unrelated variable, b, to 

represent the vertical sides because b is the second letter of the alphabet. Then, because he 

recognized b does not reflect the relationship between the sides, he generated a new method, 

4𝑛 − 4. Alyssa and Andy made similar adjustments to their expressions. Andy wrote 𝑛 + 𝑛 +

𝑥 + 𝑥, but did not show awareness of the relationship between n and x, despite verbalizing is as 

“subtract two” earlier. Alyssa wrote 𝑛 + 𝑛 + 𝐿 + 𝐿. She selected L because L is two letters 

before N in the alphabet. Of the four aTNS students who attempted to represent 2𝑛 + 2(𝑛 − 2), 

all were unsuccessful, and three used a variable that was unrelated to the side length, n.  

ENS Students’ Generalizing Behaviors 

All ENS students demonstrated factual algebraic thinking, oral algebra, and symbolic 

representation on all problems attempted (Table 1). On the border problem, three ENS students 

verbalized 2𝑛 + 2(𝑛 − 2), and two represented it symbolically. Two verbalized and 

symbolically represented 𝑛 + 2(𝑛 − 1) + (𝑛 − 2). Three verbalized and symbolically 

represented 4𝑛 − 4. A total of eight ENS students verbalized patterns because two verbalized the 

first and third methods. A total of seven represented patterns symbolically because one student 

who verbalized methods one and three also represented both symbolically.  

Discussion 

Both TNS students demonstrated factual algebraic thinking, which is the earliest form of 

non-symbolic algebraic reasoning because it requires “indeterminacy and analyticity” (Radford, 

2011, p. 311). This was supported by their construction of composite units in activity. On the 

border problem, for instance, Tabitha compared the two sides, but because TNS students must 

construct this comparison of composites in activity, Tabitha did not maintain the relationship 

between the individual side lengths. This analysis is consistent with Hackenberg’s (2013), which 

found that on the border problem, the side lengths of the grid were absorbed by the sum for 

students who construct composite units in activity. Thus, TNS students reasoned algebraically, 

although with limitations created by only constructing composite units in activity.  

Oral algebra and symbolic representation require students to make explicit the indeterminacy 

(Radford, 2011), thereby necessitating that students reflect and operate on unknowns. 
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Hackenberg et al. (2017) found that unknowns constitute composite units. This provides a 

rationale for the difficulty TNS students had; not assimilating with composite units prohibited 

their reflection and operation on unknowns, which is characteristic of the explicit indeterminacy 

of oral algebra. In this study, only one TNS student demonstrated oral algebra on one problem. 

Hackenberg (2013) similarly found that students who assimilate with one level of units had 

difficulty verbalizing on the border problem, which she attributed to their not disembedding. 

Since TNS students do not disembed, this is a plausible explanation; however, aTNS students do 

not disembed either, and in contrast to the TNS students in this study, all aTNS students 

verbalized on the border problem making it necessary to conclude that an additional mental 

construct supports oral algebra. That construct is concluded to be an assimilatory composite unit, 

which is not available for TNS students but is for aTNS students.  

To further support this conclusion, consider the oral algebra of aTNS students, who did not 

rely on recursive reasoning on problems 2 and 3. Rather, they described how an explicit 

relationship applied to any figure, making explicit the indeterminate relationship between the 

unknown figure number and the unknown number of blocks. Because an unknown constitutes a 

composite unit (Hackenberg et al., 2017), their oral algebra is attributed to an assimilatory 

composite unit. aTNS students assimilated the figure number as a composite unit containing an 

unknown number of ones and operated on the unknown in activity. This operation was marked 

by oral algebra. 

Similar to aTNS students, ENS students assimilate with composite units, which rationalizes 

their success in oral algebra. However, ENS students had success writing 100% of equations 

whereas aTNS students had less than 50%; this difference is attributed to disembedding. 

Evidence is that on the border problem, aTNS students only symbolically represented the method 

4𝑛 − 4. To write 4𝑛 − 4 the student must only conceptualize one unknown quantity. Thus, 

aTNS and ENS students alike wrote 4𝑛 − 4 by operating on composite units in activity. 

Comparatively, no aTNS student wrote 2𝑛 + 2(𝑛 − 2) or 𝑛 + 2(𝑛 − 1) + (𝑛 − 2), both of 

which require simultaneous conceptualization of the relationship between two related sides. Only 

ENS students maintained this relationship. Hackenberg (2013) attributes the simultaneous 

conceptualization of n and n-2 to disembedding, allowing for the conclusion that aTNS students’ 

equation writing, some of which primitively included n and n-2 as unrelated variables or an 

alpha-numeric code, was limited because they could not disembed. This builds on MacGregor 
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and Stacey’s (1997) categories of variable, by suggesting a theoretical rationale for the use of 

unrelated variables and variables as alpha-numeric codes. 

This research asked how the symbolic and non-symbolic algebraic reasoning of TNS, aTNS, 

and ENS students compare.  Hackenberg (2013) identified disembedding as a mental construct 

that supports symbolic representations. This research examined levels of non-symbolic 

generalizing within the frame of number, which points to assimilatory composite units as a 

supporting mental structure, in addition to disembedding. This research also identifies a potential 

rationale for students’ application of two of Stacey and MacGregor’s (1997) concepts of variable 

– using unrelated variables to represent related unknown quantities and variables as alpha-

numeric codes. This rationale can be used to inform instructional decisions when students apply 

similar variable conceptions. Additional ways of leveraging students’ composite units to support 

algebraic reasoning requires further consideration. 
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Eccles and colleagues’ Expectancy-value theory (EVT; 1983) has been widely-used in education 

research, and the cost component of this framework has recently been the subject of increased 

research. While advances in measuring the cost component have been made (e.g., Flake et al., 

2015), an on-going instrument development project for measuring attitudes in statistics 

education has encountered difficulties that motivate a deeper look at this construct. An overview 

of cost in EVT, the current state of measuring it in statistics education, and plans for a new study 

are described. The first project-specific data are to be collected in Spring 2020. 

 

Introduction 

Affective constructs have long been of interest to statistics educators and instruments have 

been available for measuring constructs such as attitudes (e.g., Wise, 1985) and anxiety (e.g., 

Cruise, Cash, & Bolton, 1985) for decades. Following increased calls for attention to affective 

constructs as outcomes in statistics education (e.g., Gal, Ginsburg, & Schau, 1997), a bevy of 

instruments assessing a multitude of germane constructs have been developed (Ramirez, Schau, 

& Emmioğlu, 2012). However, there have increasingly been critiques of existing instruments 

(e.g., Whitaker, Unfried, & Bond, 2019b), and there have also been attempts to more carefully 

define constructs such as anxiety that have heretofore not been properly distinguished from other 

affective constructs (e.g., Chew & Dillon, 2014). This is the context in which a new instrument 

for measuring student motivation for learning statistics is being developed: the Student Survey of 

Motivational Attitudes toward Statistics (S-SOMAS). This instrument is being developed using 

expectancy-value theory (EVT; Eccles et al., 1983) as the framework guiding the development 

process (Whitaker, Unfried, & Batakci, 2018). However, during the development process, the 

EVT construct cost seemed to be more difficult to develop appropriate items for than other 

constructs. This observation is consistent with documented difficulties with measuring cost 

(Flake, Barron, Hulleman, McCoach, & Welsh, 2015). To that end, a more focused examination 

of measuring cost in the context of statistics education is proposed.  

This work is in the preliminary stages, and the first project-specific data is expected to be 

collected in spring 2020. This manuscript provides an overview of cost in the EVT framework 

and a review of the current state of measuring cost and cost-related constructs in statistics 
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education. Then a few specific challenges to measuring cost encountered during the development 

of the S-SOMAS that have not yet been addressed by the current literature on cost (e.g., Flake et 

al., 2015; Jiang, Rosenzweig, & Gaspard, 2018; Wigfield, Rosenzweig, & Eccles, 2017) are 

explained. Finally, a brief summary of preliminary S-SOMAS pilot results (Unfried, Kerby, & 

Coffin, 2018) germane to cost is given along with a sketch of plans for using non-Likert-type 

items (e.g., Cacioppo, Berntson, Norris, & Gollan, 2012) to measure cost, with preliminary data 

collection to begin in spring 2020 from students enrolled in an introductory statistics course in 

Canada. 

Literature Review 

Cost in Expectancy Value Theory 

Contemporary expectancy-value theory (EVT) is a theory of achievement motivation that 

stems from the work by Eccles and her colleagues (e.g., Eccles et al., 1983). In EVT, the choice 

of task, performance on the task, and persistence on the task are affected by one’s expectancies 

and values; expectancies and values are constructs through which all other potential variables 

and constructs are mediated (Eccles & Wigfield, 2002). EVT draws on social exchange theory 

which defines cost as “any factors that operate to inhibit or deter the performance of a sequence 

of behavior” (Thibaut & Kelley, 1959, p. 12). Cost is viewed as “especially important” to the 

choices made by students (Wigfield et al., 2017, p. 124). However, cost has also been described 

as a “forgotten component of expectancy-value theory” (Flake et al., 2015, p. 232) due to the 

limited way in which it has historically been measured, though there has been an increase in 

research recently (Wigfield et al., 2017). In arguing that cost has not been adequately assessed in 

EVT research, Flake et al. (2015) clarified previous attempts to measure the construct, clarified 

and expanded the dimensions of cost, and developed an instrument that measures each of the 

four constructs using Likert-type items.  

In the original conceptualization of Eccles and colleagues’ EVT framework (1983), three 

dimensions were ascribed to cost: effort, loss of valued alternatives, and psychological cost of 

failure. There are other types of costs – such as economic or social costs – but these are still less-

studied in relation to EVT (Wigfield et al., 2017). Eccles and colleagues hypothesized that 

interactions among the dimensions of cost and other EVT constructs were important for 

determining the value of a task. Moreover, the ratio of costs to benefits was posited as being 

related to achievement behaviors rather cost in isolation (Eccles et al., 1983). Based on the 
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growing cost literature and focus groups about motivation conducted with college students, Flake 

et al. (2015) identified and defined four dimensions for cost: the emotional cost and loss of 

valued alternatives cost (previously identified by Eccles and colleagues (1983)) and two effort 

dimensions (task effort cost and outside effort cost).  

To operationalize this notion of the negative appraisal, many of the items on their instrument 

include the phrase too much, as in “This class is too much work” (Flake et al., 2015, p. 242). By 

defining cost only in terms of negative appraisals, Flake et al. distinguished the dimensions of 

cost from other related constructs such as difficulty or general effort. As a demonstration of the 

efficacy of these definitions, Flake et al. also developed a 19-item instrument that measures the 

four cost dimensions. Flake et al. (2015) collected data from undergraduate students in 

introductory calculus classes using the final version of their instrument and observed correlations 

consistent with the EVT framework: the cost dimensions were strongly, positively correlated 

among themselves and were moderately negatively correlated with measures of expectancy, 

values, interest, and achievement.  

Affective Constructs in Statistics Education 

The Survey of Attitudes Toward Statistics (SATS; Schau, 1992, 2003) and Statistics Anxiety 

Rating Scale (STARS; Cruise et al., 1985) instruments are among the most widely used 

instruments measuring affective constructs in statistics education (Chew & Dillon, 2014; 

Ramirez et al., 2012). There is more validity evidence available supporting the use of the SATS 

and STARS instruments than for other instruments assessing similar constructs (Nolan, Beran, & 

Hecker, 2012; Onwuegbuzie & Wilson, 2003), and this is one likely reason why these 

instruments have been more widely-used than others. However, this widespread use of the SATS 

and STARS combined with imprecise construct definitions guiding their initial development 

(Chew & Dillon, 2014; Ramirez et al., 2012) has resulted in construct ambiguity in practice, 

though there have been attempts to clarify the construct definitions (e.g., Chew & Dillon, 2014; 

Onwuegbuzie, Da Ros, & Ryan, 1997). For example, the STARS instrument includes six 

subscales; of these, three subscales measure anxiety constructs and three measure attitude 

constructs (Chew & Dillon, 2014). Owing in part to documented challenges to the use of the 

SATS instruments in new research contexts (e.g., Whitaker et al., 2019b), work has begun on a 

new family of instruments for measuring statistics attitudes. To support the development of the 

student version of the Survey of Motivational Attitudes toward Statistics (S-SOMAS), a 
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theoretical framework based on EVT has been developed (Whitaker et al., 2018). This theoretical 

framework is guiding the development of the S-SOMAS instrument a priori, in contrast to the 

SATS instruments which were aligned to EVT a posteriori (Ramirez et al., 2012).  

Current Work 

This current work on measuring cost has been informed by the work of Flake et al. (2015), 

but there are four areas that have been identified as areas for further study. These areas relate to 

both how cost has been defined for operationalizing in instruments and in specific ways that 

current instruments, though indicative of remarkable advances in the understanding of the cost 

construct, are not aligned with ways in which the S-SOMAS instrument is expected to be used. 

These four areas are reviewed, and then current efforts to address them are reviewed. There are 

two research questions guiding this work: (1) How can the EVT cost construct be measured in 

the context of learning statistics? and (2) How can non-Likert-type items be used in the 

measurement of cost? Note that much of this work is preliminary: while some data have been 

collected, they have not been focused specifically on cost. New items are currently being written 

with a planned pilot in early 2020.  

Challenges to using existing cost scales 

First, Flake et al.’s (2015) cost scale measuring four dimensions explicitly positions the 

respondents as students who are enrolled in a course: each of the 19 items uses the phrase this 

class and asks students to respond to statements about the class. In the development of the S-

SOMAS instrument, one goal is to develop an instrument that can be used with respondents who 

are not enrolled in courses to facilitate longitudinal research (even though most respondents are 

expected to be students enrolled in a course). While the term this class might be replaced with 

another phrase such as learning statistics, it is not clear that a simple substitution would perform 

well. Flake et al. viewed the class as the experience to be evaluated for cost and their focus 

groups and subsequent instrument development used this assumption. Moreover, students are 

asked to respond to statements that may not be appropriate early in a semester. For example, 

items such as “This class takes up too much time” or “this class is too exhausting” (Flake et al., 

2015, p. 241) may not be meaningful to students on or before the first day of class. It is 

anticipated that the S-SOMAS instrument might be administered several times in a semester, 

including on the first day of classes. Many items that were included on Flake et al.’s (2015) cost 

scale are not suitable for the intended uses of the S-SOMAS instrument.  
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While Flake et al. (2015) suggested that their definitions of the cost dimensions distinguish 

them from related constructs (e.g., difficulty or general effort), the data that they collected did 

not include items or scales measuring such closely-related constructs. More research about the 

extent to which these cost dimensions are empirically distinguishable from other closely-related 

constructs is needed. Additionally, the original EVT framework refers to one’s value of a task 

being affected by the ratio of costs to benefits (Eccles et al., 1983), and in qualitative work Flake 

(2012) found that effort can be perceived by students as positive or negative in their most 

motivating and least motivating classes, respectively. Contemporary work on cost has focused on 

its role as a construct that is negatively correlated with others, and instrument development work 

for cost has used definitions of cost frame all costs as negative (e.g., Barron & Hulleman, 2015; 

Flake et al., 2015; Jiang et al., 2018). This ignores any potential positive costs (benefits), which 

may not be accounted for by other EVT components such as values.  

S-SOMAS Pilot 

As part of the larger development of the S-SOMAS instrument, seven items measuring cost 

were written and reviewed by subject matter experts. These items are part of a larger pool of 92 

items assessing several EVT constructs administered in the pilot survey. Unfried, Kerby, and 

Coffin (2018) report results of an exploratory factor analysis (EFA) for this initial pilot survey. 

The EFA used the varimax rotation and parallel analysis to identify the number of factors 

(Unfried et al., 2018). The cost items were administered with items assessing academic self-

concept, statistics self-concept, expectancies, difficulty, and attainment value; 134 undergraduate 

statistics students responded to this form (Unfried et al., 2018). Data collection has continued 

since Unfried et al.’s work, and more detailed work using the larger dataset will be presented.  

The cost items used on the S-SOMAS pilot were not written using the same definition 

requiring a negative appraisal nor an emphasis on “too much” as in Flake et al. (2015). While the 

sample of 134 is somewhat small for the identified five-factor solution, a few preliminary 

findings were noted: it was difficult to empirically distinguish the cost items from items written 

to measure difficulty (a recognized similar construct) and attainment value (Unfried et al., 2018). 

A similarity between the cost construct and an attainment value construct has not been suggested 

to the extent of other noted construct similarities. As more data are collected and analyzed, we 

will examine these factor loadings and consider revising or writing new items. 
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Application of Other Measurement Types 

Existing scales for measuring cost constructs have used Likert-type items (e.g., Flake et al., 

2015; Jiang et al., 2018; Unfried et al., 2018; Whitaker, Unfried, & Bond, 2019a). Bipolar 

response scales (e.g., Likert-type items) imply a reciprocal relationship between the poles: as 

disagreement with an item becomes stronger, agreement with the item necessarily becomes 

weaker (Cacioppo et al., 2012). However, as observed by Flake (2012) the perception of cost 

dimensions such as effort may be perceived negatively – or might be perceived positively. 

Furthermore, the because the understanding of cost is evolving and its exact relationship with 

other EVT constructs is unknown (e.g., Barron & Hulleman, 2015; Wigfield et al., 2017), it may 

not be prudent to focus solely on cost as a negative. To address this, a set of items is currently 

being developed to measure cost that will have respondents assess both their negative perception 

and positive perception of the task using two unipolar scales. This is consistent with the 

evaluative space model (Cacioppo et al., 2012) wherein items use a two-dimensional grid to 

indicate how negative and how positive respondents are toward an item. Once data is collected 

from these cost items, it will be possible to determine to what extent the reciprocal relationship 

implied using a bipolar scale is appropriate for cost. If a bivariate relationship is better-suited, 

this information may help clarify the relationships that cost has with other EVT constructs. 

Bivariate items may be written in several ways. Respondents are presented with a statement 

or question to respond to and shown a grid that they will use to respond. In the pilot data 

collection, items will use a response grid modeled on those used by Audrezet, Olsen, and 

Tudoran (2016). Each axis will include the values 1-5, and the horizontal axis will include a 

positive label statement, and the vertical will contain a negative statement. A consensus for how 

to label the horizontal and vertical axes has not been established (e.g., Audrezet et al., 2016; 

Borriello, 2017), and so several other pairs will be used such as How POSITIVE/NEGATIVE 

does this make you feel? or How SATISFIED/DISSATISFIED does this make you feel? Examples 

of statements included in the data collection that accompany such a grid include: using statistical 

software (e.g., Minitab or R), interpreting a confidence interval, interpreting a graph, or spending 

a long time doing a statistical analysis for homework but feeling like you got it right. Several 

different types of statements will be included in the data collection.  

Discussion & Conclusion 

While affective constructs have long been studied in statistics education research, there is 
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still a growing need to clarify constructs and determine how best to measure them. Cost has been 

particularly difficult to assess as evidenced by the historical lack of research on it. Flake et al. 

(2015) were able to develop an instrument that can be used to measure cost with students 

enrolled in a specific course, but to do so they defined cost solely in terms of negative appraisals 

of activities. Historical EVT research (e.g., Eccles et al., 1983) has usually identified the ratio of 

costs to benefits as having an effect on one’s values and ultimately achievement-related 

behaviors rather than costs in isolation. This distinction may be particularly important in settings 

with both a high cost and a high benefit – perhaps, for example, in difficult, upper-level courses 

closely connected to one’s field of study and future career. The use of Likert-type instruments to 

measure cost (e.g., Flake et al., 2015; Jiang et al., 2018) imposes a reciprocal relationship: as 

one’s negative appraisals of an activity increase, the positive appraisals decrease by the same 

amount. It is plausible that this may not be the case for cost, and the proposed study will examine 

a variety of other item types, including bivariate items using a two-dimensional grid (Cacioppo 

et al., 2012). The results of this study should clarify the appropriateness of Likert-type items for 

measuring cost and suggest how the construct might be assessed in statistics education. 
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This study examined the initial construction of an assessment of 480 4th and 5th graders’ 

understanding of early algebra concepts learned during an intervention involving playing 3 

Math Snacks Early Algebra games and engaging in associated lesson activities. Preliminary 

content and internal structure validity evidence is presented and Rasch analysis was used to 

support the validity argument. Future research is needed with other populations, with a longer 

intervention, and to examine validity evidence from response processes, relation to other 

variables, and consequences of testing to establish a more generalizable validity argument. 

 

There is a long history of students struggling with algebra, even dating back to Slaught 

(1908). More recently, efforts have focused on how to introduce algebra concepts to students in 

the middle or elementary grades, otherwise referred to as early algebra (Carraher & Schliemann, 

2007). Substantial gains have been made in understanding students’ engagement in early algebra, 

so much so that some have described this body of work as having “matured” (Blanton et al., 

2015). Conversely, recent calls for further research have not only been ambitious—longitudinal, 

experimental studies (e.g., Stephens, Ellis, Blanton, & Brizuela, 2017) are difficult to achieve 

and require substantial external funding—but in order to adequately measure impact and to 

handle the larger scale, a psychometrically rigorous measurement tool is desirable. Although 

many studies have been conducted on early algebra, a validated instrument designed to measure 

student knowledge has not been constructed. Moreover, a recent special issue on validity and 

measurement tools showed a wide variety of calls for more focus on constructing high quality 

quantitative instruments to aid the field in moving forward as ideas are scaled up (Bostic, 2017). 

This study aims to respond to some of these calls by investigating sources of validity evidence 

related to an assessment designed to measure 4th and 5th grade students’ knowledge of early 

algebra concepts. 

Conceptual Framework and Related Literature 

There have been several theoretical developments about the big ideas that make-up the 

learning of algebra. For instance, Graham and colleagues drew on Usikin’s (1988; cited in 

Graham, Cuoco, & Zimmermann, 2010) four conceptions of algebra as well as ideas from the 

National Council of Teachers of Mathematics (NCTM; 2000) when constructing what they 

referred to as key elements of reasoning and sense making as it related to algebraic concepts. 

mailto:chriseng@nmsu.edu
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Moreover, the authors of the Common Core State Standards for Mathematics also drew heavily 

on these same ideas when constructing the high school algebra and function standards. However, 

these ideas were intended for use in formal learning of algebra, such as in an Algebra I course, as 

opposed to early algebra, which focuses more on the elementary grade levels. The most recent 

handbook chapter on early algebra (Stephens et al., 2017) draws on Blanton et al.’s five big ideas 

of early algebra: “(a) equivalence, expressions, equations, and inequalities; (b) generalized 

arithmetic; (c) functional thinking; (d) variable; and (e) proportional reasoning” (2015, p. 43).  

Blanton et al. (2015) implemented a year-long comprehensive early algebra program in a third 

grade classroom. Findings revealed that these five big ideas showed promise in developing early 

algebra concepts among young children. They created several items to aid in measuring 

understanding of the first four big ideas. Although Blanton et al. provided some validity 

evidence, they did not provide the level of evidence called for by Bostic (2018) or by the 

American Education Research Association, American Psychological Association, and National 

Council on Measurement in Education (AERA, APA, & NCME; 2014). This is not surprising, as 

Bostic has reported that “few articles describing an instrument’s validity evidence go beyond 

reporting reliability or content evidence” (p. 58). This study sought to provide validity evidence 

for test content and internal structure as described by AERA et al. (2014). Due to space 

limitations, evidence of validity for response processes, relation to other variables, and 

consequences of testing are not reported. 

Method 

Participants and Setting 

Twenty-eight elementary teachers of grades 4 and 5 were recruited from 10 of the 25 

elementary schools in a medium-sized public school district in the Southwest border-region of 

the US to participate. From their classrooms, 480 students participated in the entire intervention. 

The district’s total enrollment was about 25,000, had a free/reduced lunch rate of about 75%, and 

75% of students were classified as Hispanic, 20% as Caucasian, and the remaining 5% as Other. 

Context of the Use of the Math Snacks Early Algebra Assessment 

The Math Snacks Early Algebra Assessment was used as a pre and post assessment for an 

early algebra intervention. The early algebra intervention involved 1) students playing two early 

algebra games, Agrinautica and Curse Reverse, and using an interactive tool, Creature Caverns 

(all available at http://mathsnacks.com), and 2) engaging in three 60–70 minute lessons 
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connected with the games and interactive. Teachers attended professional learning on how to 

implement the lesson plans in combination with the games and interactive. 

Math Snacks Early Algebra Assessment Development 

Purpose. The Math Snacks Early Algebra assessment was designed to measure an individual 

student’s understanding of early algebra as it relates to experience with playing Agrinautica, 

Curse Reverse, and Creature Caverns, as well as the associated lessons. The assessment was 

intended to measure learning acquired while playing Agrinautica that falls within the project’s 

key concept of Write and Interpret Expressions. The assessment was also intended to measure 

learning acquired while playing Curse Reverse that falls within the project’s key concepts of 

Express Patterns and Relationships Between Quantities and of Write and Interpret Expressions. 

Lastly, the assessment was intended to measure learning associated with Creature Caverns, 

related to the key concept of Express Patterns and Relationships Between Quantities. The key 

concepts are linked to Blanton et al.’s (2015) big ideas of early algebra (see Table 1). 

Table 1.

Item Number Math Snacks Key Concept

Big Idea 

(Blanton et 

al., 2015)

Game/ Interactive Source

1a, 1b Write/Interpret Expressions 1, 4 Curse Reverse Blanton et al. (2015)

2a, 2b, 2c Express Patterns/Relationship 3 Curse Reverse Foegen and Dougherty (2017)

3 Write/Interpret Expressions 1, 4 Curse Reverse Blanton et al. (2015)

4 Express Patterns/Relationship 1, 3, 4 Curse Reverse Foegen and Dougherty (2017)

5a, 5b Write/Interpret Expressions 1 Agrinautica Blanton et al. (2015)

6 Write/Interpret Expressions 1 Agrinautica In-House

7 Write/Interpret Expressions 1, 4 Agrinautica, Curse Reverse In-House

8E1, 8E2, 8E3, 8b Write/Interpret Expressions 1 Agrinautica In-House

9a, 9b, 9c Express Patterns/Relationship 1, 3, 4 Curse Reverse Foegen and Dougherty (2017)

10a, 10b, 10c Express Patterns/Relationship 1, 3, 4 Creature Caves Rivera (2010)

Math Snacks Early Algebra assessment item alignment with early algebra concepts and original source

Note: Blanton et al.’s (2015) big ideas are numbered as 1) equivalence, expressions, equations, inequalities; 3) functional thinking; 4) variable  

Item selection and construction. As suggested by AERA et al. (2014), a main goal was to 

maintain a close connection to our purpose. Therefore, our bank of assessment items had to be adapted to 

more closely relate to the intervention. Ultimately, three items were modified from Blanton et al. (2015), 

three from Foegen and Dougherty (2017), one from Rivera (2010), and three were constructed by project 

staff. This resulted in 10 items including a total of 22 sub-parts. Item 7 was multiple choice and the others 

were open-response.  

Item revision. After initial construction, the assessment was field tested with 45 upcoming 6th 

graders during a summer camp to aid in development of the assessment and games. After a round of 

revisions based on qualitative inspection of student responses, the assessment was sent out for expert 
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review. After a round of revision from expert review, we conducted task-based clinical interviews with 

three pairs of 5th graders. After final revisions, the assessment included 10 items and 21 sub-items (see 

Table 1). 

Inter-Rater Reliability 

First, rubrics were created to dichotomously score sub-items. All assessments were de-

identified. Eight raters attended a training session and independently coded two assessments. 

After resolving differences, rubrics were revised. Then, all raters were given the same set of 18 

randomly selected assessments to independently code. The average proportion of agreement 

ranged from 91.7% to 98.2%. Moreover, of the 18*21=378 sub-items, only 19 had less than 75% 

agreement, and 319 had 100% agreement, providing evidence of interrater reliability. 

Analysis 

To assess test content validity, we examined the literature for items previously used to assess 

early algebra concepts, aligned the items to current theories on the important concepts to be 

learned in early algebra, and submitted the assessment for expert review. All 3 expert reviewers 

reported that the test content was aligned with the purpose of the instrument, the intended target 

content of early algebra, and with the opportunities to learn the content within the intervention. 

To analyze internal structure validity, we first conducted a Rasch PCA and examined person 

and item fit statistics to examine unidimensionality. We then used results from a Rasch model 

(Bond & Fox, 2015), conducted using the eRm package (Mair & Hatzinger, 2007) in R, to 

examine person fit statistics and a person-item map. Infit and outfit mean square values should 

be less than 1.3 (Fox & Jones, 1998), and outfit and infit t values should be within ± 2.0 (Bond & 

Fox, 2015). For items outside of these ranges, we examined theoretical Item Characteristic 

Curves (ICC) in relation to actual performance to identify items varying substantially from the 

model (Bond & Fox, 2015). Last, Cronbach’s alpha was used to examine internal reliability and 

a differential item function (DIF) analysis was conducted using the Mantel-Haenszel method for 

grade level and general logistic regression method for comparing by teacher and school to 

examine consistency across subgroups, using the difR package (Magis, Béland, & Raiche, 2018). 

Results 

Validity Evidence for Internal Structure 

Examining unidimensionality. Because we assumed that the instrument was 

unidimensional, we first examined infit statistics and conducted a PCA on the standardized 
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Rasch residuals. Infit mean square values were within suggested limits, ranging from 0.808 to 

1.171, implying that the model’s predicted variability matched closely with the observed 

variability—an indicator of unidimensionality. Although several infit t-statistics were larger than 

expected values, it could be due to the large sample size (Bond & Fox, 2015). 

The PCA revealed an eigenvalue greater than 2.0 for the first dimension, providing evidence 

of multidimensionality (Linacre, 2019). Further analysis indicated that item 10 had much larger 

factor loadings than the others. After reviewing the content of item 10, we removed it because 

the content was quite different from other items and had been designed to align with Creature 

Caverns—which was not fully developed before the assessment was finalized. 

After removing item 10, a new Rasch PCA was conducted. Results indicated that no 

dimension’s eigenvalue was greater than 2.0, and therefore, unidimensionality could be assumed. 

Follow-up examination of infit mean square values (see Table 2) showed all items were within 

bounds, and t-statistics indicated, as before, that some items were larger than expected—a 

possible symptom of the larger sample size. When combined with the Rasch PCA analysis, we 

concluded that the instrument was unidimensional. The remaining sections incorporate the 9 

items, collectively containing 18 sub-parts, found to make up a unidimensional instrument. 

Examining person fit statistics and person-item map. Rasch person fit statistics were 

found to largely be within an acceptable range, with mean square values near 1.0 (Moutfit = 1.037, 

Minfit = 0.957) and z-statistics near 0 (Mz outfit = 0.026, Mz infit = -0.163). Moreover, the vast 

majority of person infit t-statistics were within the expected bounds of ± 2.0. Furthermore, the 

person-item map (see Figure 1) revealed spread across the latent dimension, with the majority of 

students having ability scores less than 1.0. Moreover, items were found to have clustered well 

with difficulty expectations. For instance, items 8E1, 8E2, and 8E3 asked students to write 

expressions of increasing complexity. However, none of these three items required anything 

beyond writing the expression. Item 8b was expected to be more difficult because it required 

students to evaluate one of their expressions, and it was observed to be nearly twice as difficult 

as the simplest expression (8E1). Furthermore, items requiring the use of variable (items 1, 3, 4, 

7, 9) were found among the most difficult, as expected. 

Outfit statistics were out of bounds (see Table 2) for items 7, 8b, and 1a. Therefore, we 

examined the theoretical ICCs in relation to actual performance to locate potential erratic 

responses. For item 7, although the model appeared to over-predict a bit more frequently than it 
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under-predicted, the mismatch between theoretical and empirical was quite small. This seems to 

imply no cause for concern (Bond & Fox, 2015). Similarly, the comparison of theoretical to 

empirical ICC for items 8b and 1a did not relay concern (Bond & Fox, 2015).  

 

Figure 1. Person-item map of Rasch model, not including item 10 

Cronbach’s alpha revealed appropriate levels of internal reliability ( = 0.85, CI: 0.83, 0.87). 

DIF analyses revealed no DIF by teacher or school, but a DIF for three items when compared by 

grade level. Item 6 and 9b observed high effect sizes (MH = 7.49 and -1.92, respectively) and 

item 9a observed a moderate effect size (MH = -1.45). However, these differences are expected 

due to differences in grade level content standards. 
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Table 2.

Mean Square t -statistic Mean Square t-statistic

8E1 -2.720 0.134 -2.981 -2.458 0.707 -1.370 0.834 -2.33

8E2 -2.378 0.126 -2.624 -2.132 1.01 0.110 0.868 -2.03

8E3 -2.169 0.122 -2.407 -1.931 0.754 -1.540 0.826 -2.9

5a -2.069 0.120 -2.304 -1.834 1.079 0.530 0.987 -0.19

8b -1.141 0.110 -1.357 -0.926 1.5 4.070 1.119 2.32

2c -1.105 0.110 -1.320 -0.890 1.262 2.3 0.951 -0.99

5b -0.769 0.109 -0.983 -0.556 1.004 0.07 0.955 -0.93

9a -0.108 0.112 -0.327 0.111 0.817 -1.67 0.865 -2.71

2b 0.048 0.114 -0.175 0.270 0.757 -2.15 0.854 -2.82

7 0.306 0.117 0.077 0.535 1.816 4.88 1.105 1.76

2a 0.524 0.121 0.287 0.760 1.025 0.21 1.047 0.76

1a 0.726 0.125 0.481 0.970 1.373 2.04 0.97 -0.43

6 0.875 0.128 0.624 1.126 1.273 1.44 1.112 1.52

9b 0.962 0.130 0.707 1.218 0.776 -1.21 0.853 -2.05

1b 1.766 0.157 1.458 2.075 0.789 -0.69 0.809 -1.96

3 2.207 0.178 1.858 2.556 1.205 0.65 0.792 -1.78

9c 2.421 0.190 2.048 2.794 0.704 0.906 -0.68 -0.68

4 2.624 0.203 2.226 3.022 0.822 -0.27 0.826 -1.22

Outfit Infit

Item statistics

Item 

Difficulty

Standard 

Error
Lower CI Upper CI

 

Discussion 

The learning of early algebra concepts is an important precursor to formal algebra concepts 

introduced in secondary grade levels (Stephens et al., 2017). However, in order to adequately 

respond to calls for longitudinal, experimental, and large-scale studies that have the power to 

provide evidence of scalable programs (e.g., Stephens et al., 2017), a quantitative measure of 

early algebra concepts that has strong validity evidence is needed. This study provides validity 

evidence of content and internal structure for the Math Snacks Early Algebra assessment 

instrument. 

Although results provided positive validity evidence, evidence for response processes, 

relation to other variables, and consequences of testing are needed in order to provide a strong 

validity argument for the assessment’s use in research. Further, the assessment is limited in scope 

by an explicit purpose to measure learning achieved by 4th and 5th students playing Agrinautica 

and Curse Reverse in combination with the developed lessons that made up the Math Snacks 

Early Algebra intervention. Moreover, validity evidence is limited by student demographics and 

the location of the school district. One potential change in validity evidence that is reasonable to 

expect, and needs to be researched, is that item difficulty levels could be reduced from students 

spending longer playing the games, thereby possibly making it necessary to add items to ensure 

adequate coverage of the scope of latent ability scores. Additionally, since the item associated 
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with Creature Caves was removed, it would be worthwhile for future research to re-examine 

how to measure student learning of early algebra as it relates to this interactive. 
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The purpose of this proceeding is to share validity evidence for the Problem-solving Measure for 

grade 5 (PSM5). The PSM5 is one test in the PSM series, which is designed for grades 3-8. 

PSMs are intended to measure students’ problem-solving performance related to the Common 

Core State Standards for Mathematics (i.e., content and practices). In addition to sharing 

validity evidence connected to the PSM5, we discuss implications for its use in current research 

and practice. 

Introduction 

Problem solving is found in both the Standards for Mathematics Content and Standards for 

Mathematical Practice (Common Core State Standards Initiative [CCSSI], 2010). There is no 

doubt about its importance as part of classroom instruction (National Council of Teachers of 

Mathematics, 2000). Because it is an important part of instruction, it should be assessed in a way 

that provides students, teachers, and other school personnel with valuable information. 

Unfortunately, there continues to be few quantitative measures of problem solving that align with 

mathematics standards (Bostic, Krupa, & Shih, 2019; Bostic, Sondergeld, Folger, & Kruse, 

2017). The purpose of this manuscript is to provide a validation argument for a new test within a 

series of Problem-solving Measures (PSMs). The PSMs are designed for grades 3-8 students 

learning mathematics. The test in the present study is meant for grade 5 students; hence, it is 

called the PSM5. 

Relevant Literature 

Problems and Problem Solving 

There are entwined, mutually beneficial frameworks intended to frame the purpose and intent 

of the PSM5 and its items, specifically problem solving and problems. First, problems were 

defined using two frameworks. The first framework was Schoenfeld’s (2011) notion that 

problems are tasks for a problem solver such that (a) it is unclear whether there is a solution, (b) 

it is unknown how many solutions exist, and (c) the pathway to the solution is unclear. The 

second framework for problems stems from work conducted by Verschaffel and colleagues 
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(1999). Problems are (a) open, (b) complex, and (c) realistic tasks for an individual. Open tasks 

can be solved using multiple developmentally-appropriate strategies. Complex tasks are not 

readily solvable by a respondent and require productive thinking. Realistic tasks may draw upon 

real-life experiences, experiential knowledge, and/or believable events. These two frameworks 

for problems are synergistic and provided PSM5 developers a roadmap for what should be 

included in tasks. 

The framework for problem solving that guides PSM development is a process of “several 

iterative cycles of expressing, testing and revising mathematical interpretations – and of sorting 

out, integrating, modifying, revising, or refining clusters of mathematical concepts from various 

topics within and beyond mathematics” (Lesh & Zawojewski, 2007, p. 782). Such a problem-

solving perspective requires tasks that encourage students to engage in productive, reflective, 

goal-oriented problem solving (Schoenfeld, 2011; Yee & Bostic, 2014). Problem solving takes 

substantially more cognitive effort compared to solving routine tasks (Polya, 1945/2004). 

Validity and Validity Arguments 

Validation is an important part of the assessment development process and while it, “may not 

be easy…it is generally possible to do a reasonably good job of [it] with a manageable level of 

effort” (Kane, 2016, p. 79). Validation, broadly speaking, involves the process of gathering 

evidence and constructing an argument that connects an instrument’s outcomes and/or 

interpretations from it to its designed purpose (Kane, 2012). Validity is “the degree to which 

evidence and theory support the interpretations of test scores for proposed uses of tests” 

(American Educational Research Association, American Psychological Association, & National 

Council on Measurement in Education [AERA, APA, & NCME], 2014, p. 11). Second, this 

research draws upon the Standards (AERA et al., 2014), which describe five sources of validity 

as necessary facets for assessment development: test content, response process, internal structure, 

relations to other variables, and consequences from testing. Claims from the PSM5 are 

associated with the definitions of each source. Third, a validation argument typically follows a 

specific format (e.g., Kane, 2016; Pellegrino, Dibello, & Goldman, 2016; Wilson & Wilmot, 

2019) to convey validity evidence. A validation argument serves to inform readers of the validity 

evidence and why it justifiably grounds the implications and results from an instrument.  To that 

end, the research question for the present study was: What is validity evidence associated with 
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the PSM5? This study builds upon prior PSM work and its authors seek to develop a validity 

argument for the PSM5 using this evidence.  

Method 

This study draws upon a design science approach (Middleton, Gorard, Taylor, & Bannan-

Ritland, 2003) and connects with recent literature that validation is a methodology within 

mathematics education research (Jacobsen & Borowski, 2019). Design science research is 

valuable for creating products that can be evaluated, refined, and re-evaluated. Jacobsen and 

Borowski argued that validation work serves as a methodology unto itself because there are 

specific characteristics of such work. For the purposes of this study, the Standards (AERA et al., 

2014) were chosen as a mechanism to convey the validity argument for this manuscript. This 

approach for the validity argument was used for previous research examining the PSMs. 

The Standards (AERA et al., 2014) advocate for assessment developers to gather evidence 

for the five sources; however, the quality of evidence rather than the quantity of evidence is more 

important. Past research that has drawn solely upon test content and internal consistency 

evidence does not provide a sufficiently robust validity argument such that others might trust that 

the results and interpretations are valid (Bostic, 2017). 

Instrument and Participants 

There were two groups of participants involved in this study. All names are pseudonyms. The 

study was approved by the Institutional Review Board. The first group was fifth-grade students. 

Fifth-grade students participated in think-aloud interviews, consequences from testing/bias 

interviews, and actual testing of the PSM5.  Students were purposefully selected from rural, 

suburban, and urban districts within the Midwest USA. Seventy-three students in total 

participated in think alouds and 335 students participated in PSM5 test administration. The 

second group of participants were fifth-grade teachers, mathematics teacher educators whose 

focus is elementary grade levels, and mathematicians who have expertise is teaching 

mathematics content for elementary teachers. All adult participants for the expert panel 

communicated having sufficient understanding of the Common Core State Standards (CCSS) 

and agreed to review the PSM5 for content and potential bias.  

The PSM5 that students completed May 2019 contained 18 items meant to measure students’ 

problem-solving performance within the context of CCSS for Mathematics Content (SMC) and 

Practices (SMPs) as seen in Figure 1. There are at least three items for each of the five 
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mathematical domains found in the fifth-grade SMCs (i.e., Operations and Algebraic Thinking, 

Number and Base Ten, Number and Fractions, Geometry, and Measurement and Data). A 

sample PSM5 item reads:  

The State Nut Company buys 22 pounds of pecans, 30 pounds of walnuts, 30 pounds of 

peanuts, 25 pounds hazelnuts, and 30 pounds of almonds. They sell mixed-nuts in 2.5-pound 

containers, which contain exactly 0.5 pounds of each nut type. How many containers will 

they make?  

Items have been previously reviewed by an expert panel and those results were reported in 

Bostic, Matney, Sondergeld, and Stone (2018).  

 

Figure 1. Linking PSM5 items with mathematics content standards and variable map 

Data Collection and Analysis 

Table 1 provides an outline of data collected, analysis technique used, and how it connects to 

the validity evidence framework. Expert panel reports were gathered from multiple fifth-grade 



63 
Proceedings of the 47th Annual Meeting of the Research Council on Mathematics Learning 2020 

mathematics teachers who had more than three years teaching experience in that grade, 

mathematics teacher educators, and mathematicians.  Their reports provided feedback on 

connections to mathematics content, mathematics practices (CCSSI, 2010), and potential areas of 

bias. Think alouds were conducted with fifth-grade students several months prior to test 

administration and immediately following test administration. The goals for early think alouds 

were to explore ways that students might respond to PSM5 items. Think alouds following test 

administration were conducted to discern students’ feelings and affect after testing. These 

qualitative data were analyzed using thematic analysis, similar to past PSM analyses (see Bostic 

& Sondergeld, 2015; Bostic et al., 2017). Thematic analysis aims to generate a theme or central 

idea from evidence (Creswell, 2012; Hatch, 2002). Quantitative data collection for relations to 

other variable evidence included collecting demographic evidence about the 335 respondents. 

Students’ responses to the items were analyzed using Rasch modeling to interpret students’ and 

items’ qualities. Finally, bias was investigated using independent samples t-tests and Rasch 

(Rasch, 1960/1980) techniques to explore whether there were any differences in students’ 

performance. 

Table 1  

Connections between validity evidence, data collection, and data analysis 

Validity Evidence 

Source 

Data collected Data analysis technique 

Test Content Expert panel reports from 4 grade-level teachers, 

2 mathematics educators, and 2 mathematicians 

participated. (qualitative) 

Thematic analysis (Creswell, 

2012; Hatch, 2002) 

Response processes Think-aloud data with representative purposeful 

sampling of students (i.e., different ability levels, 

genders, and geographic context) (n=73; 

qualitative) 

Thematic analysis (Creswell, 

2012; Hatch, 2002) 

Relations to other 

variables 

Ability level, gender, and geographic contexts 

(quantitative) 
Independent samples t-tests  

Internal Structure Test results from 335 respondents across 4 

schools (quantitative) 
Rasch modeling 

Consequences from 

testing/bias 

Expert panel reports, think alouds with 

purposeful, representative sample of students 

following test administration, teacher interviews 

following test administration, and analyzing 

relations to other variables evidence (mixed 

methods) 

Thematic analysis (Creswell, 

2012; Hatch, 2002) 

Independent samples t-tests 

Results 

The results from validity evidence analysis are presented in relation to the five sources. A 

variable map is provided in Figure 1. First, the experts provided positive feedback indicating that 
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the PSM5 items were connected to fifth-grade SMCs, address the SMPs, could be solved using 

multiple developmentally-appropriate strategies, were complex enough to be considered 

problems, and drew upon realistic contexts. Second, response processes results indicated that 

students were able to use appropriate mathematical strategies while problem solving PSM5 

items. Readability of the items was not an issue, as evidence by students’ abilities to read and 

understand what each question asked. Third, evidence about relations to other variables 

suggested that the PSM5 functioned as desired. Independent samples t-tests comparing ability 

levels, gender, and ethnicity all reported expected results. Higher ability students outperformed 

average-ability and below average-ability students (p<.05). There were no statistically significant 

differences between white and non-white students (p>.05) as well as no differences between 

performances by gender (p>.05). There were also no statistically significant differences between 

students from different geographic locations (i.e., rural, suburban, and urban; p>.05). Some items 

indicated that females performed better than males whereas other items suggested that males 

performed better than females, which is normal for an entire measure.  

Collectively speaking however, there was no overall difference between male and female 

performance on the PSM5. Fourth, internal structure evidence was evident that psychometrically 

the test functioned effectively. Separation and reliability scores of 2.00 and .80 are considered 

good while 3.00 and .90 are considered excellent (Duncan, Bode, Lai, & Perera, 2003). Person 

separation (i.e., number of distinct groups that can be classified on the variable) and reliability 

were trending towards good (i.e., 1.6 and .73 respectively). Item separation and reliability 

exceeded the threshold for excellent (7.0 and .98 respectively). Finally, the expert panel and 

students reported that they did not experience or notice any bias in the PSM5. Post-test 

administration interviews revealed that students felt that the test was similar to a unit test. 

Students reported feeling satisfied that their results might be used to inform teachers’ instruction. 

Bias analyses from quantitative data revealed that across the test as a whole, bias was not 

weighted towards one group (e.g., males or females). 

Discussion and Next Steps 

Taken collectively, the validity evidence indicated that the PSM5 functions as intended. This 

evidence parallels the quality of validity evidence seen in the PSM6-8 series, which addresses 

expectations described in the Standards (AERA et al., 2014). This new PSM5 also extends the 

PSM series into elementary grade levels. Work on the PSM3 and PSM4 is running parallel to the 
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PSM5, which will offer an assessment series that has potential to examine students’ progress 

from elementary school into middle school mathematics content. Teachers and school personnel 

as well as researchers interested in fifth-grade students’ problem-solving outcomes may feel 

confident that this validity evidence supports results and interpretations linked to the PSM5. 

        Drawing upon the design-science approach to this work, the development team has revised 

the PSM5 with the intent to improve the person separation values and to shorten the test. Both 

features are likely to improve quality and result in better psychometric values. While person 

separation and reliability are lower than desired, measuring students’ problem solving can 

present issues because problem solving is more difficult than performance on exercises or other 

routine mathematics items (Bostic & Sondergeld, 2015). Thus, it might be expected to have low 

person separation scores. Another next step is revising the PSM5 to include fewer items; 

however, drawing upon high quality items. This may result in higher reliability that meets or 

exceed recommendations. The results for this validation study stem from data collected May 

2019. A revised PSM5 was piloted during September 2019, which will generate new internal 

structure findings to report and hopefully improved psychometric findings. This manuscript 

offers validity evidence, which will be taken up for the ensuing PSM validity argument. 
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Over the last two decades, significant attention has been given to mathematics teaching and 

learning, as demonstrated by national reform models and national curriculum changes. As a 

result, mathematics teacher educators came to identify a set of practices referred to as High 

Leverage Teaching Practices (HLTP) that researchers believe improve the teaching and 

indirectly the learning of mathematics. This study sought to determine if practicing elementary 

mathematics teachers identified as effective use HLTP and how they describe their use of these 

practices.  

 

Background 

In 1989 the National Council of Teachers of Mathematics (NCTM) released the Curriculum 

and Evaluation Standards for School Mathematics, starting an unprecedented standards-based 

movement to improve mathematics education systemically in the U.S. (NCTM, 1989, 2000).  

Concurrent to the adoption of the last NCTM standards, the National Research Council (2001) 

published two well-received documents providing recommendations about mathematics 

teaching. Ten years later, a national curriculum emerged in the form of the Common Core State 

Standards Mathematics (National Governors Association Center for Best Practices  & Council of 

Chief State School Officers, 2010) adopted by forty-five states. However, even with the plethora 

of standards and recommendations for K-12 mathematics education, NCTM acknowledges that 

the mathematics preparation of students is “far from where we need to be and that much still 

needs to be accomplished” (NCTM, 2000, p. 6). These curriculum reforms and ongoing 

improvement of the NCTM standards prompted researchers to begin the development of High 

Leverage Teaching Practices (HLTP) in mathematics.      

High Leverage Teaching Practices 

Ball and Forzani (2011), along with the University of Michigan College of Education faculty, 

developed a common knowledge base for teaching with a thorough analysis of existing research 

studies and teacher practices. They identified 100 practices that teachers do in their classrooms. 

As part of this analysis, classroom teachers from all over the United States reviewed the list of 

practices and made additions and revisions. Using a set of pre-identified criteria, Ball and 

Forzani began identifying high leverage practices or practices that have the most significant 
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impact on student outcomes.  Ball and Forzani (2011) defined high leverage practices as those 

practices or tasks that are significant to teaching. If carried out skillfully and effectively by the 

teacher, HLTP will likely result in an increase in student achievement (Ball & Forzani, 2011). 

HLTP are useful across a wide range of subject areas and grade levels and will likely help to 

meet the academic needs of all students.  

HLTP in Mathematics 

Following the work of Ball and Forzani (2011) in the development of High Leverage 

teaching practices in mathematics, NCTM released Principles to Actions (2014) identifying eight 

specific high-leverage mathematics teaching practices that offer a framework to improve the 

teaching and indirectly the learning of mathematics. The following eight practices represent 

HLTP that were necessary to help students develop deep mathematical understanding: 

Establish mathematics goals to focus learning, implement tasks that promote reasoning and 

problem solving, use and connect mathematical representations, facilitate meaningful 

mathematical discourse, pose purposeful questions, build procedural fluency from conceptual 

understanding, support productive struggle in learning mathematics, elicit and use evidence of 

student thinking. For student achievement to increase in elementary mathematics, NCTM 

believes these practices are “essential teaching skills necessary to promote deep learning of 

mathematics” (NCTM, 2000, p. 21). 

Implementing High Leverage Teaching Practices in Mathematics  

While elementary mathematics learners would benefit when teachers implement research-

informed HLTP, researchers have noted that many pre-service teachers struggle with these 

practices (Davin, 2013). For example, Davin (2013) studied four elementary pre-service teachers 

during their field experience to observe their implementation of the specific HLTP of 

questioning and increased interaction. He found that pre-service teachers consistently had 

difficulty implementing the specific HLTP that involve meaningful interactions between teacher 

and student. Davin (2013) suggests that pre-service teachers often struggle to move away from 

their lesson plans and often miss authentic opportunities for learning. Grossman (2011) echoes 

the assertions of Davin (2013) concerning pre-service teachers. HLTP may take years of practice 

to master, and teachers may need to be supported as they struggle with implementation.  
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Literature Review 

In recent years, there has been a renewed interest in the study of practice-based teacher 

education across many academic areas (Billingsley & Bettini, 2017). In particular, researchers 

and teacher educators have focused on identifying high-leverage teaching practices (HLTP) or 

practices that, when implemented correctly by teachers, are believed to support higher levels of 

student achievement than other teaching practices (Hlas & Hlas, 2012). Currently, many 

researchers are focusing on identifying effective teaching practices, decomposing them into 

micro-practices, and using the information gained to inform teacher education (Adnot, Dee, 

Katz, & Wcykoff, 2017). 

Many policymakers are concerned with employing 'better' teachers and developing new 

approaches to teacher evaluation and accountability rather than advancing the infrastructure and 

knowledge base required for high-quality instruction (Darling-Hammond, 2004). The teaching 

profession lacks a standard, widely agreed-upon definition of the characteristics of effective 

instructional practice. For example, several researchers have identified an essential component of 

instructional practice as teachers' ability to comprehend, elaborate, respond to, and extend 

student thinking during classroom discussion (Lampert, Boerst, & Graziani, 2011).  

Although effective teaching in mathematics may be similar to productive teaching in 

different disciplines (Hlas & Hlas, 2012), each subject requires focused attention to those 

teaching practices that are most effective in supporting student learning that is specific to that 

discipline (Hill, Ball, & Schilling, 2008; Hill, Rowan, & Ball, 2005). Research from both 

mathematics education and cognitive science (Mayer, 2002) support that learning mathematics is 

an active process, where each student builds his or her understanding based on personal 

experience, feedback from peers, teachers and themselves. This research has recognized several 

principles of learning that provide the basis for effective mathematics teaching. Specifically, 

students should have experiences that allow them to engage with challenging tasks that involve 

meaning making, connect new learning to prior knowledge, acquire procedural and conceptual 

understanding, construct knowledge socially, receive descriptive and timely feedback, and 

develop metacognitive awareness of themselves as learners. 

 Lampert, Boerst, and Garziani (2011) assert that HLTP aims to not only teach all kinds of 

students to know mathematics but for students to be able to apply their knowledge to solve 

authentic, real-world problems. HLTP in mathematics focus on the learning that is co-produced 
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by students and teachers in specific contexts, the practices that are central to teaching 

mathematics, and address issues of student differences and equity (Ball & Forzani, 2011).  

Methodology 

The purpose of this study was to describe elementary mathematics teachers’ knowledge and 

implementation of high leverage teaching practices (HLTP). Case study design was used to 

examine teachers' understanding of high leverage teaching practices in mathematics and 

subsequent classroom instructional implementation of these practices. Merriam (1998) asserts 

the appropriateness of selecting a case-study methodology to complete a holistic and intensive 

analysis of a single, delimited object of study. Also, Yin (2003) concluded that when an 

investigation takes place in a real-life context and theory development is a goal of the study, a 

case study is a correct choice. 

Participants and Context 

This study took place at a public elementary school (grades K-3) located in a metro area in 

the southeastern U.S. This particular elementary school currently has 452 students and 46 faculty 

members that are certified teachers. The student body is 71% White, 14% Black, 5% Hispanic, 

3% Asian, and 7% Multiracial. The percentage of students eligible for the federally funded free 

and reduced lunch program is 14%. Additional student demographics include students with 

disabilities at 10% and students with limited English proficiency at 2%. The participants (3 

teachers) in this study were purposefully selected because of their experience with teaching 

elementary mathematics and being recommended by their principal and instructional coach as 

effective mathematics teachers.  Both the principal and instructional coach were asked to provide 

their definitions of an effective teacher of mathematics, as well as, the characteristics each expect 

to observe during classroom instruction. The school principal and instructional coach indicated 

that an effective mathematics teacher is a teacher that focuses on effective questioning 

throughout the lesson. Also, effective teachers should encourage and allow students to solve 

problems in a variety of ways using different solution strategies. They also stated that when 

observing a lesson, students should be talking and defending their solutions and explaining their 

thinking in relation to their solutions. Effective teachers foster mathematical dialogue, they do 

not primarily focus instruction on finding answers and using classic algorithms.  

Shannon (pseudonym) is a female teacher holding an Educational Specialist degree. She was 

near the end of her 14th year of teaching during this study. Shannon expressed that she always had 
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difficulty in math and did not develop a better understanding of concepts until adulthood. Jessica 

(pseudonym) is a female with 13 years of teaching experience. Jessica holds a bachelor’s degree in 

Early Childhood Education, a master’s degree in Reading and Literacy, and an Educational 

Specialist degree in Educational Leadership. Jessica also reported receiving a K-5 mathematics 

endorsement that was offered by the school district. Jessica indicated that her motivation to 

become an elementary teacher stems from her difficulties in mathematics and hoping to provide a 

different, more positive experience for her students. Sarah (pseudonym) is a female with five years 

of teaching experience and three years of teaching kindergarten in the school in this study. Sarah 

holds both bachelor's and master’s degrees in Early Childhood Education. She also obtained the K-

5 Elementary Mathematics Endorsement. Sarah indicated that she believes that she is very 

competent in mathematics and also views herself as a strong mathematics teacher. 

Data Collection 

Data for this study was collected using (a) individual, semi-structured initial interviews of the 

three participating teachers on their knowledge of HLTP, (b) classroom observations using the 

Classroom Instructional Observation Protocol (CIOP) instrument, (c) audio recording of the 2 

mathematics lessons taught by each participating teacher, and (d) field notes. Data collection 

occurred in a variety of ways to strengthen the design of the study. Data triangulation involves the 

cross checking of multiple data sources in order to ensure construct validity. Multiple sources of 

evidence help to ensure results are valid (Bush, 2012). During the observations of classroom 

mathematics lessons, teachers were observed in order to document the ways in which teachers 

implement HLTP. Also, during in-depth interviews teachers were asked to describe their 

knowledge of HLTP and their perceptions of and experiences with implementing them in their 

classrooms.   

Data Analysis 

After each interview and observation, audio recordings were transcribed verbatim and memos 

written to further ideas or questions that emerged during the transcription process. Constant 

Comparative data analysis involves the process of making meaning from data, a process involving 

the consolidation, reduction, and interpretation of what has been said and observed (Merriam, 

1998).  

All data found from the a priori coding of the interviews and field notes was analyzed using 

the process of content analysis in an attempt to quantify the frequency of themes related to high-
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leverage teaching practices. For this study, the following a priori HLTP were identified as 

observable behaviors from the full list of HLTP and were used for initial coding: (1) meaningful 

mathematical discourse (MMD), (2) purposeful questions (PQ), (3) support productive struggle 

(SPS), and (4) promoting reasoning and problem solving (PRPS).  

Findings 

Four a priori codes were examined for this study. They were: teachers use of purposeful 

questioning, teachers supporting productive struggle, teachers promoting reasoning and problem 

solving, and teachers encouraging mathematical discourse. The findings from this study suggest 

that experienced elementary mathematics teachers do implement high leverage teaching practices 

in their classrooms with varying frequencies. For the lessons observed with each teacher, 

Shannon asked 52 purposeful questions, Jessica asked 42 purposeful questions, and Sarah asked 

29 purposeful questions. Also, during the lessons, Shannon was observed supporting productive 

struggle eight times, while Jessica was observed nine times, and Sarah 2 times. Additionally, 

Shannon was observed promoting reasoning and problem solving 24 times, Jessica was observed 

developing reasoning and problem solving 31 times, and Sarah was observed 17 times. Finally, 

during the lesson observations, Shannon was observed encouraging mathematical discourse 52 

times, while Jessica was observed 40 times, and Sarah observed 22 times. 

Although the use of HLTPs was not identified as a specific criterion for selection, it appears 

that at least, in this case, elementary mathematics teachers do use HLTPs. All three mathematics 

teachers were observed implementing HLTP's, and all reported having no formal training in the 

use of these practices.  The primary difference across the three teachers was that the more 

experienced teacher used high leverage teaching practices more frequently, suggesting that over 

time, teachers may become more confident in their teaching and become more flexible and 

extensive in their questioning and use of student-centered practices. Shannon, the most 

experienced teacher in the study, was observed using HLTP’s a minimum of 10 more times than 

the other teachers. This is consistent with previous studies that found differences in the amount 

of use of teaching behaviors exhibited between more novice and experienced teachers (Borko & 

Livingston, 1989) and Mathematical Knowledge for Teaching (Hill et al., 2005). 

During the interviews, all teachers expressed little knowledge of HLTP’s when using the 

formal label, but when prompted as to what these practices involved they all expressed having a 

significant amount of understanding about these instructional practices and their use.  Sarah, for 
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example indicated, “Yes, I would say that asking questions is just good teaching in math.”  Sarah 

also stated, “I think that using HLTP’s in the classroom provides a framework for teaching.  I 

feel like I can always go back and use the strategies in my planning and instruction.”  Shannon 

agreed with Sarah in stating, “I always try to focus my questioning so my students will have the 

opportunity to problem solve and communicate their thinking. When I am using these practices, I 

feel that it helps me to ask the students a lot of how and why questions to further develop their 

thinking. Jessica, also stated, “Yes, I believe that the HLTP’s help me to focus my instruction on 

the types of questions and problems I wanted to give to my students. Teaching using these types 

of practices has helped me to use more open-ended questions with my students to help them 

understand math better. All three participants in this study were able to describe using HTLP's in 

their mathematics instruction and exhibited these behaviors in their teaching, providing 

confirmatory evidence of NCTM's position regarding HLTP. 

Table 1 

Frequencies of Teacher’s use of HLTP 

Purposeful Questions  
Shannon (15 years 

experience) 

Jessica (13 years 

experience) 

Sarah (5 years 

experience) 

Lesson 1 27 23 18 

Lesson 2  25 17 11 

Supporting Productive Struggle  

Lesson 1 5 7 0 

Lesson 2  3 2 2 

Promoting Reasoning and Problem Solving  

Lesson 1 11 14 12 

Lesson 2  13 17 5 

Encouraging Mathematical Discourse  

Lesson 1 27 23 15 

Lesson 2  25 17 7 

Conclusions 

 This study was a preliminary examination of the use of HLTPs in the elementary classroom. 

Perhaps its most significant contribution is the exposure of the additional research needed on 

HLTPs before being implemented on a large-scale basis without clear evidence of impact. There 

is no doubt that the use of HLTP as a framework for instructional practice in mathematics 

provides a useful perspective for the professional development of elementary teachers. In the 

future, it will be necessary for teacher evaluators to assess the rigor and depth of the mathematics 

content to ensure teacher’s use of HLTP is effectively addressing the mathematics standards. 

 



75 
Proceedings of the 47th Annual Meeting of the Research Council on Mathematics Learning 2020 

References 
Adnot, M., Dee, T., Katz, V., Wyckoff, J. (2017). Teacher turnover, teacher quality, and student 

achievement in DCPS. Educational Evaluation and Policy Analysis, 39, 54–76.  

Ball, D., & Forzani, F. (2011). Building a common core for learning to teach: And connecting 

professional learning to practice. American Educator, 35(2), 17-21. 

Billingsley, B., Bettini, E. (2017). Improving special education teacher quality and effectiveness. In 

Kauffman, J. M., Hallahan, D. P., Pullen, P. C. (Eds.), Handbook of special education (pp. 501–

520). New York, NY: Routledge.  

Borko, H., & Livingston, C. (1989). Cognition and improvisation: Differences in mathematics 

instruction by expert and novice teachers. American Educational Research Journal, 26(4), 473-

498. 

Bush, T. (2012). Authenticity in research: Reliability, validity and triangulation. Research Methods 

in Educational Leadership and Management, 175-193. 

Darling-Hammond, L. (2004). Standards, accountability, and school reform. The Teachers College 

Record, 106(6), 1047-1085. 

Davin, K. J. (2013). Integration of dynamic assessment and instructional conversations to promote 

development and improve assessment in the language classroom. Language Teaching 

Research, 17(3), 303-322. 

Grossman, P. (2011). Framework for teaching practice: A brief history of an idea. Teachers College 

Record, 113(12), 2836-2843. 

Hill, H. C., Ball, D. L., Schilling, S. G. (2008). Unpacking pedagogical content knowledge: 

Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for 

Research in Mathematics Education, 39, 372-400. 

Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for 

teaching on student achievement. American Educational Research Journal, 42, 371-406. 

Hlas, A. C., & Hlas, C. S. (2012). A review of high‐leverage teaching practices: Making connections 

between mathematics and foreign languages. Foreign Language Annals, 45(1), 76-97. 

Lampert, M., Boerst, T., & Graziani, F. (2011). Organizational assets in the service of school-wide 

ambitious teaching practice. Teachers College Record, 113(7), 1361-1400.  

Mayer, R. E. (2002). The promise of educational psychology: Teaching for meaningful learning 

(Vol. 2). (pp. 315-327). Upper Saddle River, NJ: Prentice-Hall. 

Merriam, S. B. (1998). Qualitative research and case study applications in education. (pp.123-234). 

San Francisco, CA: Jossey-Bass.  

National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and evaluation 

standards for school mathematics. Reston, VA: NCTM. 

National Council of Teachers of Mathematics (2000). Principles and standards. Reston, VA: NCTM.  

National Council of Teachers of Mathematics. (2014). Principles to action: Ensuring mathematical 

success for all. Reston, VA: Author. 

National Governors Association Center for Best Practices & Council of Chief State School Officers 

(NGA Center & CCSSO). (2010). Common core state standards for mathematics. Washington, 

DC: Authors. Retrieved from http://www.corestandards.org/Math/ 

National Research Council. (2001). Adding it up: Helping children learn mathematics. J. Kilpatrick, 

J. Swafford, & B. Findell (Eds.), Mathematics Learning Study Committee, Center for Education, 

Division of Behavioral and Social Sciences and Education. Washington, DC: National Academy 

Press. 

Yin, R. K. (2003). Case study research: Design and methods (3rd ed.). (pp.58-65). Thousand Oaks, 

CA: Sage.  

  

http://www.corestandards.org/Math/


76 
Proceedings of the 47th Annual Meeting of the Research Council on Mathematics Learning 2020 

EXAMINING PRESERVICE TEACHERS’ STEM DISPOSITIONS THROUGH 

INFORMAL LEARNING 

 

 Cathrine Maiorca Thomas Roberts 

 California State University, Long Beach Bowling Green State University 

 cathrine.maiorca@csulb.edu  ortrober@bgsu.edu  

 

Preservice teachers’ dispositions influence how they teach STEM. This study examined 46 

preservice teachers’ dispositions about integrated STEM after they participated in an informal 

STEM learning experience. Data included the Teacher Efficacy and Attitudes Toward STEM 

Survey. A paired t-test was conducted on the mathematics teaching efficacy and beliefs, 

elementary STEM instruction, STEM career awareness, and science teaching efficacy and beliefs 

categories. All categories were significantly different except for 21st Century Skills. This study 

demonstrates how participating in informal STEM learning environments can be used to 

positively shape preservice teachers’ dispositions towards integrated STEM in mathematics. 

 

Introduction 

As society is becoming increasingly more dependent on science, technology, engineering and 

mathematics (STEM), everyone needs to develop STEM literacy to function in society (Bybee, 

2018). Therefore, it is important for preservice teachers to be able to provide students with 

access to quality STEM education, even if these students choose not to pursue a STEM career 

(Maiorca & Mohr-Schroeder, in press). All students should have access to relevant and engaging 

mathematics curriculum that serves as a foundation for STEM (National Council of Teachers of 

Mathematics, 2018). This can be accomplished through integrated STEM learning experiences 

(Roberts et al., 2019).  

Literature Review 

Preservice elementary teachers’ dispositions are important as they influence their willingness 

and ability to use integrated STEM to teach mathematics. Dispositions are defined by the 

Council for the Accreditation of the Educator Preparation (2015) as, “The habits of professional 

action and moral commitments that underlie an educator’s performance” (Dispositions section, 

para. 6). Dispositions are influenced by beliefs because beliefs can “be thought of as lenses that 

affect one's view of some aspect of the world” and are “psychologically held understandings, 

premises, or propositions about the world that are thought to be true” (Philipp, 2007, p. 259).  

Research has shown a connection between dispositions and the mathematical teaching practices 

implemented in the classroom (Ball & Cohen, 1999; Philipp, 2007; Wilkins, 2008). Often 

preservice teachers’ personal experiences in mathematics remain the default mode of instruction 
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(Foss & Kleinsasser, 1996; Thomas & Pederson, 2003). The connection between teachers’ 

dispositions and practices is also true in STEM education (Maiorca & Benken, 2019). Thus, if 

preservice teachers do not have the attitudes, beliefs, and values to teach mathematics through 

integrated STEM, they may not provide these important experiences to their students. For this 

study, affective dispositions were defined as the attitudes, beliefs, and values that preservice 

teachers hold about teaching mathematics through integrated STEM. 

One reason preservice teachers may have neutral or negative dispositions about teaching 

mathematics through integrated STEM is they have little experience with STEM (Bybee, 2018). 

The dispositions preservice teachers hold about STEM education will affect the choices they 

make with their teaching, including interactions with students (Mohr-Schroeder, Cavalcanti, & 

Blyman, 2015).  Philipp (2007) found preservice teachers’ dispositions about teaching 

mathematics change when they see children's mathematical thinking; this is also true for their 

dispositions towards STEM. Jackson et al. (2018) explored the use of non-traditional field 

placements as ways to shape preservice teachers' dispositions while developing their pedagogical 

abilities. Our study takes a similar approach by using an informal STEM learning experience as a 

way to affect the dispositions of preservice teachers towards using integrated STEM to teach 

mathematics.  

Theoretical Framework 

STEM situated learning theory was used to examine how the preservice teachers’ 

dispositions were influenced by their participation in an informal STEM learning experience 

(Kelley & Knowles, 2016). Situated learning theory has been used similarly to explore 

connections between preservice teachers’ dispositions toward STEM in formal learning settings 

(Maiorca & Benken, 2019). Situated STEM learning occurs when STEM content is integrated 

within a community of practice where authentic, relevant learning takes place (Kelley & 

Knowles, 2016). In our study, pedagogical strategies were modeled in an elementary 

mathematics methods course, which served as a professional learning experience (Bybee, 2018). 

In this professional learning experience, teachers were active learners and participated in 

activities in the same manner as their students (Johnson & Sondergeld, 2016). This provided 

preservice teachers the opportunity to experience the STEM content knowledge and pedagogies 

they use in their classrooms as learners. 
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Objectives of the Study 

The purpose of this paper is to examine how informal STEM learning environments can be 

used to positively influence preservice teachers’ dispositions. While the literature on preservice 

teachers’ dispositions toward mathematics is broad, there is limited research on how informal 

STEM experiences affect preservice teacher’s dispositions towards STEM. The primary research 

question for this study is: Does participating in an informal STEM learning experience change 

preservice teachers’ dispositions about implementing integrated STEM? 

Methodology 

To examine how participating in an informal STEM learning experience affected pre-service 

teachers’ dispositions, including beliefs towards STEM education, data were collected from pre-

service teachers, who participated in an informal STEM learning experience as part of their 

elementary mathematics methods course. This present study took place at a public university in 

the Western United States and is part of an ongoing study that uses an informal STEM learning 

experience as a way to positively affect the dispositions of preservice teachers enrolled in an 

elementary mathematics methods course.  

There were 46 participants in this study, 39 identified as females and 7 identified as males. 

Forty-six percent of the participants identified as Latinx, 42 % as White, 2% as African 

American, and 9% identified as Asian. In this course preservice teachers completed a 

collaboratively designed STEM unit (Maiorca & Benken, 2019) and an informal STEM learning 

experience. Preservice teachers experienced STEM first as learners through a Model-Eliciting 

Activity (MEA). In this MEA, participants created a scale model to build a shelter (Maiorca & 

Stohlmann, 2016). Then they experienced STEM as a teacher when they read a STEM lesson for 

Kindergarten and found the relevant Kindergarten standards. After this unit, they participated in 

a week-long informal STEM learning experience for 5th through 8th-grade students. During the 

informal STEM learning experience, the students participated in a half a day of engineering 

design activities and half a day of robotics. The preservice teachers helped facilitate hands-on, 

integrated STEM activities with local STEM professionals, and assisted students as they 

designed and built robots for robotics challenges.  

For this study, only the data from the pre and post administration of the Teacher Efficacy and 

Attitudes Toward STEM (T-STEM) Survey were examined (Friday Institute for Educational 

Innovation, 2012). The T-STEM survey was administered on the first day of the semester, and 
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six weeks later, at the end of the semester, during summer sessions of 2017, 2018, and 2019. As 

this study reports on initial findings, the composite scores for each participant were calculated by 

averaging the scores in each category. Then, a paired t-test was conducted to compare the pre-

and post-scores for the study participants. The following categories were examined: mathematics 

teaching efficacy and beliefs, elementary STEM instruction, 21st-century learning attitudes, 

STEM career awareness, and science teaching efficacy and beliefs. These categories were 

analyzed because they aligned with the work preservice teachers did in the informal learning 

experience (e.g., working with STEM professionals, teaching integrated STEM units that 

focused on mathematics and science). For each of the categories examined the Cronbach’s Alpha 

was greater than 0.90 (Friday Institute for Educational Innovation, 2012). The Bonferroni 

method was used to control for type I error, and the adjusted alpha was 0.01 (Hinkle, Wiersma, 

& Jurs, 2003). 

Results and Discussion  

A paired t-test was conducted to compare the pre and post scores for the following categories 

of the T-STEM survey: mathematics teaching efficacy and beliefs, elementary STEM 

instruction, 21st-century learning attitudes, STEM career awareness, science teaching efficacy 

and beliefs (Table 1). There was a significant difference between the pre and post scores for all 

of the categories (p < 0.001) except 21st-century learning attitudes (p = 0.31). This could be due 

to scores that were already high on the pre [M = 4.49, SD = 0.72] and post [M = 4.61, SD = 

0.69] surveys.  

For mathematics efficacy and beliefs, participants scored higher on the post-survey [M = 

3.98, SD = 0.63] than the pre-survey [M = 3.38, SD = 0.70], reflecting the participants’ higher 

self-efficacy and beliefs after participating in the integrated STEM learning. Similarly, in science 

efficacy and beliefs, participants scored higher on the post-survey [M = 3.86, SD = 0.54] than 

the pre-survey [M =3.21, SD = 0.54]. After the integrated STEM learning experiences, 

participants also had higher self-efficacy and beliefs towards teaching both mathematics and 

science.  
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Table 1 

Results from the T-STEM Survey Collected the First and Last Day of the Semester 

Category Mean SD P-value 

 Pre Post Pre Post  

Mathematics Teaching Efficacy and Beliefs 3.38 3.98 0.70 0.46 p < 0.001 

Elementary STEM Instruction 3.28 1.00 4.32 0.79 p < 0.001 

21st Century Learning Attitudes 4.49 0.72 4.61 0.69 p < 0.314 

STEM Career Awareness 2.73 0.96 4.21 0.76 p < 0.001 

Science Teaching Efficacy and Beliefs 3.25 0.51 3.86 0.54 p < 0.001 

 

Prior research in this area has found changing beliefs about teaching science and 

mathematics to be difficult (Foss & Kleinsasser, 1996; Thomas & Pederson, 2003). Thomas and 

Pederson (2003) found their preservice teachers’ initial beliefs “indicated a strong orientation 

toward an individual who is in charge of classroom knowledge, resources, and the environment” 

(p. 326). The findings are similar to the findings of this research study.  In order to ensure that 

these positive changes in both beliefs about teaching mathematics and science continue, 

preservice teachers should be given multiple opportunities to collaborate with their peers and 

STEM professionals. Additionally, professional development is needed for inservice teachers to 

provide opportunities for teachers to continue to develop integrated STEM lessons.  

For the category elementary STEM instruction, participants also had higher scores on the 

post-survey [M = 4.32, SD = 0.61] than on the pre-survey [M = 3.28, SD = 0.72]. Participants 

reported that they would use more STEM instructional practices in their teaching after the 

informal STEM learning experience. This suggests interacting within a community of practice of 

content experts while doing authentic activities (Kelley & Knowles, 2016) positively influenced 

the preservice teachers’ conceptions of STEM. 

STEM Career Awareness also showed a significant improvement between the pre and post-

survey [M = 2.73, SD = 0.96; M = 4.21, SD = 0.76], respectively. The informal STEM learning 

experience emphasized a variety of STEM careers. This increase in awareness is important 
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because it provides a context for teaching content. If preservice teachers are unaware of different 

STEM careers, then they will be unable to provide information about them to their students. 

Another reason this finding is important is that preservice teachers’ beliefs about what STEM is 

influences how they implement STEM activities (Mohr-Schroeder, Cavalcanti, & Blyman, 2015) 

and the only way for students to learn about different careers is if their teachers can introduce 

their students to them (Maiorca et al., 2020). 

Studies have shown when mathematics is taught using an integrated STEM context, students’ 

performance on assessments improved (Kelley & Knowles, 2016). Moreover, when science is 

taught using an inquiry approach, such as those in integrated STEM contexts, students take 

control of their learning (Kelley & Knowles, 2016). Preservice teachers, therefore, need to have 

positive dispositions towards teaching STEM content. This study showed how the use of an 

informal STEM learning experience can help preservice teachers develop more positive 

dispositions towards teaching STEM content which can, as Kelley and Knowles (2016) noted, 

have impacts on future student learning of STEM content. 

Implications 

This study demonstrates how participating in informal STEM learning environments can be 

used to positively shape preservice teachers’ beliefs towards integrated STEM in the 

mathematics classroom. After the preservice teachers participated in the informal STEM learning 

environment, their dispositions (e.g., attitudes, beliefs, and values) about integrated STEM 

changed. When their default teaching strategies derive from the way they were taught (Foss & 

Kleinsasser, 1996), preservice teachers usually do not use more effective teaching methods, such 

as the effective STEM teaching practices (Steele, 2019). Participating in the informal STEM 

learning environment allowed the preservice teachers to see the effectiveness of the integrated 

STEM by first engaging them as students and then having them interact with middle-grade 

students in integrated STEM contexts. 

A second implication is the importance for students to engage in activities that challenge 

their beliefs. Philipp (2007) noted the importance of changing dispositions to change 

instructional behaviors. Preservice teachers were immersed in integrated STEM contexts through 

their participation in a nontraditional field experience. The goal of situating them in a community 

of practice that was participating in authentic STEM activities (Kelley & Knowles, 2016) was to 

change the STEM pedagogy strategies preservice teachers enact. The results demonstrate 
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significant changes in mathematics teaching efficacy, elementary STEM instruction, STEM 

career awareness, and science teaching efficacy. Therefore, situating the preservice teachers in 

this informal STEM learning environment changed their dispositions.   

Limitations and Future Research 

One limitation is the small sample size. There have been positive results from year to year 

and future research will include scaling up the program and including a control group. Future 

research will focus on growing the program to determine if the findings are consistent with larger 

numbers of preservice teachers. Another limitation is that the questions in the category, 21-

century skills, on the T-STEM survey don’t specifically address robotics, which was the primary 

technology used throughout the camp. The qualitative data analysis is ongoing, and not included 

in this study. Preliminary findings support the quantitative results. Future work will provide a 

more complete picture of the preservice teachers' experiences in the informal STEM learning 

environment and how those lived experiences shaped their dispositions towards integrated 

STEM as a context to make mathematics more relevant and engaging for students. In the future, 

longitudinal studies should follow the preservice teachers as they transition to inservice teachers 

to determine if there is a lasting change in the STEM pedagogies they enact.  
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Preservice elementary teachers have higher mathematics anxiety and lower self-efficacy in 

teaching mathematics which leads to more negative attitudes toward mathematics. These 

negative conceptions can adversely influence mathematics instruction (Philipp, 2007). This study 

qualitatively explored shifts in 84 elementary preservice teachers’ conceptions of mathematics 

after participating in an introductory mathematics education course. Findings show positive 

shifts in preservice elementary teachers’ views about teaching and learning mathematics with an 

emphasis on the effective mathematics teaching practices (NCTM, 2014). Based on these 

findings, preservice elementary teachers need intentional, sustained mathematics learning 

opportunities in order to prepare them to be effective mathematics teachers. 

 

Introduction 

Preservice elementary mathematics teachers are more likely to have higher mathematics 

anxiety (Vinson, 2001), lower mathematics teacher efficacy (Swars, Daane, & Giesen, 2006), 

and be more likely to implement traditional pedagogical techniques in the classroom (Guillaume 

& Kirtman, 2010). However, to be effective mathematics teachers, teachers have to understand 

mathematics content, how students learn mathematics, and effective pedagogical strategies to 

help scaffold students’ learning of mathematics (Ball, Thames, & Phelps, 2008; National Council 

of Teachers of Mathematics (NCTM), 2014). Prior work (e.g., Roberts, Maiorca, & Roberts, 

2019) has demonstrated statistically significant shifts in preservice teachers’ attitudes, 

confidence, and content knowledge after participating in an introductory mathematics education 

course designed to build content knowledge, and positively influence conceptions of teaching 

and learning mathematics. However, all changes in conceptions did not occur at the same 

magnitude and some conceptions (e.g., beliefs) showed changes that were not statistically 

significant. The purpose of this study is to qualitatively explore how preservice elementary 

teachers’ conceptions changed after participating in the introductory mathematics education 

course. The research question for this study is: How do preservice elementary teachers describe 

excellent mathematics teachers and instruction after participating in an introductory mathematics 

education course? 
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Conceptual Framework and Related Literature 

Teachers not only need content knowledge, but also pedagogical content knowledge. In 

mathematics, pedagogical content knowledge consists of knowledge of content and students, 

knowledge of content and teaching, and knowledge of curriculum (Ball et al., 2008). Within 

pedagogical content knowledge, teachers have to think about students’ understanding of content, 

how to best sequence their teaching, and what strategies would be most effective in teaching the 

content. The conceptions teachers have about mathematics, therefore, influence the way they 

teach mathematics (NCTM, 2014; Wilkins, 2008). Thompson (1992) broadly defined 

conceptions as a “general notion or mental structure encompassing beliefs, meanings, concepts, 

propositions, rules, mental images, preferences” (p. 130). Related to conceptions, McLeod 

(1992) defined the affective domain as “a wide range of beliefs, feelings, and moods that are 

generally regarded as going beyond the domain of cognition” (p. 576). Conceptions and affect 

include beliefs, attitudes, dispositions, anxiety, and confidence (Philipp, 2007). Dispositions are 

defined by the Council for the Accreditation of the Educator Preparation (2015) as, “The habits 

of professional action and moral commitments that underlie an educator’s performance.” This 

includes the attitudes, beliefs, and values that teachers hold. These negative conceptions and 

dispositions will adversely impact preservice teachers’ enactment of the effective mathematics 

teaching practices (see Table 1; NCTM, 2014). The mathematics teaching practices are a 

“research-informed framework… of high-leverage practices and essential teaching skills 

necessary to promote deep learning of mathematics” (NCTM, 2014, p. 9). 

 

Table 1 

Effective Mathematics Teaching Practices 

Effective Mathematics Teaching Practices 

Establish mathematics goals to focus learning 

Implement tasks that promote reasoning and problem solving  

Use and connect mathematical representations 

Facilitate meaningful mathematical discourse 

Pose purposeful questions 

Builds procedural fluency from conceptual understanding 

Support productive struggle in learning mathematics 

Elicit and use evidence of student thinking 
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Elementary and special education teachers usually have lower efficacy in their mathematics 

teaching abilities and more have negative attitudes toward mathematics (Bursal & Paznokas, 

2006; Karp, 1991; Swars et al., 2006; Vinson, 2001). Teachers are less likely to be confident 

teaching mathematics when they have high mathematics anxiety (Bursal & Paznokas, 2006). 

Similarly, teachers’ negative conceptions and affect can adversely affect their mathematics 

instruction (Philipp, 2007). A teacher’s self-efficacy, and knowledge of both content and 

pedagogy have been shown to influence how they approach teaching in their classrooms (Brown 

& Benken, 2009). Given the abundance of literature highlighting these issues, mathematics 

teacher educators face the challenge of navigating the complex, interrelated relationships 

between conceptions, content knowledge, and teaching of mathematics (Llinares, 2002) as they 

prepare preservice teachers to be effective at teaching mathematics. 

Methodology 

Setting and Participants 

This study took place in an introductory mathematics education course taught at a large 

public research university in the Mid-Western United States. The course modeled and 

emphasized the importance of engaging in tasks that promote reasoning and problem solving, 

using and connecting mathematical representations, engaging in meaningful mathematical 

discourse, supporting productive struggle, and building procedural fluency from conceptual 

understanding (NCTM, 2014). Thus, the course was designed for preservice teachers to not only 

gain deeper content knowledge, but also to engage them in the sociomathematical norms critical 

to implementing effective mathematical teaching practices that they will use as teachers. 

Preservice teachers (n=84) enrolled in the Spring 2018, Fall 2018, and Spring 2019 semesters of 

the course participated in this study. Of the 84 preservice teachers, 80 self-identified as female, 

while four self-identified as male. Eighty-eight percent of the preservice teachers self-identified 

as White, 7% as Black, 1% as Asian, 1% as Latinx and 3% as other/mixed race. 

Data Collection and Analysis 

Preservice teachers completed the Mathematics Experiences and Conceptions Surveys – 

Entry (MECS-E) at the beginning and end of the introductory mathematics education course. The 

MECS-E is a Likert-type scale with six levels ranging from strongly disagree (1) to strongly 

agree (6). The MECS-E also has open response questions, including: in what ways do you think 

students most effectively learn mathematics?; and, imagine you walked into a classroom and saw 
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the ‘best’ teacher teaching mathematics. – what do you see happening in the classroom? (Jong & 

Hodges, 2015). This paper focuses on participant responses to the open response questions 

around teaching and learning mathematics. The responses were collected at the beginning and 

end of the Spring 2018, Fall 2018, and Spring 2019 semesters. 

A naturalistic inquiry methodology was used to qualitatively investigate preservice teachers’ 

conceptions about teaching and learning mathematics. Naturalistic inquiry allowed us to explore 

multiple realities preservice teachers created during their experience (Lincoln & Guba, 1985). 

We used a deductive approach with the effective mathematics teaching practices as a lens to 

frame important issues (Creswell, 2014) relevant to changes in preservice teachers’ conceptions 

of mathematics after they completed an introductory mathematics education course. One author 

developed a list of 10 provisional codes (Miles, Huberman, & Saldaña, 2014) and discussed the 

codes with the research team to make necessary revisions. One author then coded the open 

responses with the provisional codes for first cycle coding (Saldaña, 2015) to better understand 

preservice teachers’ conceptions about teaching and learning mathematics through the lens of the 

effective mathematics teaching practices. After initial coding, the research team conducted 

second cycle coding through pattern coding (Saldaña, 2015). The groupings identified related to 

concepts within conceptions and aligned with the effective teaching practices (e.g., productive 

struggle, using and connecting multiple representations, the importance of discourse). Patterns 

were used to identify common themes and any divergent cases (Delamont, 1992). 

Findings and Discussion 

Three primary themes arose from the data analysis: (a) preservice teachers emphasized the 

importance of productive struggle and a growth mindset in learning mathematics; (b) preservice 

teachers’ dispositions toward mathematics instruction shifted toward the effective mathematics 

teaching practices; and, (c) preservice teachers’ expressed more positive beliefs about 

mathematics. 

Preservice teachers consistently identified elements of supporting productive struggle in 

learning mathematics after participating in the course. Specifically, preservice teachers 

emphasized the importance of encouraging students to persist in mathematics and to learn from 

their mistakes. As one preservice teacher explained, students learn mathematics most effectively 

when they are in “an environment where everyone feels it is okay to make a mistake” (Spring 

survey, 2018). Similarly, another preservice teacher noted it is important for teachers to allow 
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“students to make corrections and learn from their mistakes, whether the students have a fixed or 

growth mindset” (Fall survey, 2018). Teachers should also be “encouraging her students to not 

give up and to keep going even when it is hard” (Spring survey, 2018). These ideas emphasize 

the importance of supporting productive struggle, one of the effective mathematics teaching 

practices. Moreover, these statements contrast with their initial responses that focused on 

“practice” (Spring survey, 2019) and doing “problems to help better their skills” (Spring survey, 

2018). The end of course responses emphasize the importance of making mistakes when learning 

(Boaler, 2016) and show shifts in the preservice teachers’ views on mathematics instruction. 

Relatedly, preservice teachers had qualitatively different responses that indicated a positive 

shift toward the effective mathematics teaching practices. For example, one student noted, “I 

think students effectively learn math by seeing examples and having hands-on activities. I feel as 

if doing a lecture for math isn’t the best method” (Spring survey, 2018). Similarly, one student 

explained, “I think students most effectively learn mathematics when learning multiple ways to 

solve a problem, over time, with manipulative’s and connecting it to real life situations” (Spring 

survey, 2018). Another student emphasized the importance of using “hands on activities and 

visuals… because they [students] can visually see it [the mathematics]” (Spring survey, 2019). 

These examples demonstrate how students mentioned the importance of using manipulatives, 

real world scenarios, and other hands-on methods to learn mathematics. All of these statements 

align with the effective mathematics teaching practices of choosing tasks that promote reasoning 

and problem solving and using and connecting mathematical representations. While these are 

broad strategies, the course provided an introduction to teaching mathematics and did not focus 

on pedagogy to the extent a methods class does. On the pre-survey, responses typically focused 

on helping “students feel comfortable” (Spring survey, 2019), having “a great teaching 

philosophy” (Spring survey, 2018), and showing students the “teacher cares about them” (Fall 

survey, 2018), as examples. One student even noted that students learn mathematics best “how 

she was taught throughout her years as a student” (Spring survey, 2018). These statements 

suggest feel good activities and using the methods they experienced as teachers are effective to 

teach mathematics. Compared to the pre-survey, students’ exposure to teaching that reinforced 

the effective mathematics teaching practices helped shift their conceptions and dispositions 

toward to more specific, effective pedagogical practices (NCTM, 2014). 
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Preservice teachers’ beliefs about mathematics also exhibited positive shifts. Prior 

quantitative analysis showed belief composite scores from the MECS-E increased for students. 

While not significantly different, this confirms previous literature that demonstrates beliefs 

change slowly (e.g., Philipp, 2007), and the positive shifts warrant further qualitative 

exploration. The pre-survey responses emphasize skill based approaches to mathematics. For 

example, one student suggested students learn mathematics most effectively when “the student 

practices and does problems to help better their skills” (Spring survey, 2018). This is typical of 

the pre-survey responses that represents students’ beliefs about mathematics as being skill based 

and detached from the real world. In their post-survey responses, students expressed different 

beliefs about mathematics. For example, one preservice teacher recommended teachers  

show and explain different ways of solving the same math question, as well as make student 

show and explain their work. Through both of these techniques, students understand what 

they are doing a little more and allows them to retain the information instead of just being 

lectured to (Spring survey, 2018).  

This is reflective of the effective mathematics teaching practices that emphasize choosing tasks 

to promote reasoning, using and connecting mathematical representations, and using and 

eliciting student responses (NCTM, 2014). Another student identified “relating math to the 

outside world and multiple ways of solving problems” as critical components of good 

mathematics teaching (Fall survey, 2018). These responses indicate the importance of using 

multiple representations, including contextual, visual, verbal, physical, and symbolic 

representations (Lesh, Post, & Behr, 1987). Although subtle, these shifts are important because 

they reflect the changes preservice teachers’ experience after participating in an introductory 

mathematics education course. Beliefs change slowly (Philipp, 2007). However, these findings 

demonstrate that small changes occur in as little as one course. Giving preservice elementary 

teachers more opportunities to engage in quality mathematics teaching and learning could allow 

these small changes to accumulate into meaningful changes in their beliefs. 

Each of these themes demonstrate how preservice elementary teachers’ conceptions changed 

after one introductory mathematics education course. Pre-survey responses emphasized “a great 

teaching philosophy” (Spring survey, 2018), “practice” (Spring survey, 2019) and doing 

“problems to help better their skills” (Spring survey, 2018). These examples are indicative of the 

generalizations and skill-based responses. Post-survey responses represented a shift in 
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conceptions about mathematics through an emphasis on the effective mathematics teaching 

practices (NCTM, 2014). Preservice elementary teachers noted the importance of productive 

struggle, such as one student noting the importance of “encouraging her students to not give up” 

(Spring survey, 2018). Other students emphasized the importance of reasoning and using 

multiple representations, such as when one student noted, “I think students most effectively learn 

mathematics when learning multiple ways to solve a problem, over time, with manipulative’s 

and connecting it to real life situations” (Spring survey, 2018). Together, the qualitative data 

show how preservice elementary teachers’ conceptions about teaching and learning mathematics 

changed during their first mathematics education course.  

Conclusions and Implications 

These findings offer confirmation of quantitative results (e.g., Roberts et al., 2019) that 

demonstrate the significant positive impacts an introductory mathematics education course had 

on preservice elementary teachers’ conceptions of mathematics. Preservice teachers can adopt 

the importance of growth mindset and instructional dispositions aligned with the effective 

mathematics teaching practices. Although beliefs do change slowly (Conner & Gomez, 2019), 

the findings in this paper show that beliefs do begin to positively shift even after one course. This 

underscores the need for elementary and special education teachers—who, as described above, 

generally have more negative conceptions of mathematics—to have more experiences in 

mathematics education courses, such as the minimum of 12 semester-hours focused on 

elementary mathematics content suggested by the Conference Board of the Mathematical 

Sciences (2012). More research is needed to determine appropriate sequencing, the best balance 

of content and pedagogy, and long term implications, especially once preservice teachers 

graduate and have their own classrooms, of sustained engagement with mathematics. 
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The purpose of this multiple case study was to examine mathematics teacher educators’ (MTEs’) 

practices by determining which teaching practices MTEs identify as most focused upon with 

preservice teachers in their secondary mathematics methods courses (SMMCs) and why. A 

background information survey, Teacher Action Q-Sort (Franz, Wilburne, Polly, & Wagstaff, 

2017; Wilburne, Polly, Franz, & Wagstaff, 2018), and interviews were used to collect data. 

Findings suggest MTEs teaching SMMCs focus on a variety of practices for different reasons 

with many focusing on MTP 2: Implement tasks that promote reasoning and problem solving 

(National Council of Teachers of Mathematics [NCTM], 2014). 

 

Education of preservice teachers in teacher educator programs across the United States varies 

greatly (Arbaugh, Ball, Grossman, Heller, & Monk, 2015). Preparation of mathematics teacher 

educators (MTEs) also varies (Reys, Glasgow, Teuscher, & Nevels, 2008), thus MTEs’ practices 

may vary as well. Because new faculty members in mathematics education are likely to teach 

mathematics methods courses (Reys, Reys, & Estapa, 2013), it seems important to explore those 

practices and how they could be supported. The purpose of this study was to examine MTEs’ 

practices by determining which teaching practices MTEs identify as most focused upon with 

preservice teachers in their secondary mathematics methods courses (SMMCs) and why.  

Literature Review 

The Mathematics Teaching Practices (MTPs) listed in Table 1 were developed based on 20 

years of previous research in the field and can serve as a research-based framework for teaching 

and learning mathematics (National Council of Teachers of Mathematics [NCTM], 2014). 

Table 1 

Mathematics Teaching Practices (NCTM, 2014) 

Mathematics Teaching Practices (MTPs) 

MTP 1: Establish mathematical goals to focus learning.  

MTP 2: Implement tasks that promote reasoning and problem solving.    

MTP 3: Use and connect mathematical representations.  

MTP 4: Facilitate meaningful mathematical discourse.  

MTP 5: Pose purposeful questions.   

MTP 6: Build procedural fluency from conceptual understanding.   

MTP 7: Support productive struggle in learning mathematics.  

MTP 8: Elicit and use evidence of student thinking.  
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Teaching practices, however, may look different for different MTEs. There have been a number 

of calls for studies related to exploring MTEs and their practices. Arbaugh and Taylor (2008) 

called for a research program focused specifically on MTEs, which has since been supported by 

Lee and Mewborn (2009) and Kastberg, Tyminski, and Sanchez (2017). Kastberg and colleagues 

called for exploration of frameworks and activities to “further allow MTEs to leverage their 

considerable practical knowledge to build lines of scholarly inquiry supportive of the 

development of scholarly practices” (2017, p. 1264). In a study of syllabi for mathematics 

methods courses, Taylor and Ronau (2006) found a great deal of variability in terms of course 

assignments, goals, and objectives, calling for additional research related to identifying and 

understanding MTEs’ practices as they relate to teaching mathematics methods courses.  

One way to examine MTEs’ practices is by focusing on a particular dimension of practice, 

such as their planning and preparation (Danielson, 2011). Kastberg et al. (2017) called for 

research related to MTEs’ practices in context, including descriptions and research related to 

their development:  

Different methods instructors will always rely on different frameworks and have different 

goals, but a literature base that provides insights into the work of MTEs in context, variation 

in scholarly practices MTEs develop, and experiences activities afford for [preservice 

teachers] is needed (p. 27).  

The call for this research should be answered to inform MTEs’ practices, support their 

professional development, and support those who are new to the field.  

This study can serve as a response to previous calls related to MTEs’ teaching practices by 

examining the practices they focus on with preservice teachers in SMMCs to explore MTEs’ 

instructional decisions. To explore MTEs’ practices, the researcher developed the following 

research question to guide the study: Which teaching practices do mathematics teacher educators 

identify as most focused upon in their secondary mathematics methods courses and why?  

Methodology 

Participants 

The participants in this study were selected using criterion-based purposeful sampling and 

maximum variation sampling. Criteria required the participants to be (1) a MTE with a terminal 

degree at a four-year college or university teaching courses in a teacher preparation program and 

(2) currently teaching or have previously taught a SMMC. A survey was emailed to members of 
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the Association of Mathematics Teacher Educators and the Association of Mathematics Teacher 

Educators in Texas using Qualtrics to locate potential participants and gather data related to their 

teaching practices. Then, maximum variation sampling was utilized to purposefully select six 

participants to serve as cases for an in-depth investigation with additional data collection to look 

for and describe central themes across a great deal of variation (Merriam, 2009; Patton, 2002). 

The cases in the study are indicated in Table 2. Pseudonyms were used for each of the cases. 

Table 2 

The Cases 

Case Terminal Degree Current Role 
Years of Teaching 

Experience by Type 

Tammy Ph.D. in 

Mathematics 

Education 

Professor,  

Mathematics Department,   

Public Research University 

8 Years – High School 

27 Years – University* 

  

Natalie Ed.D. in 

Mathematics 

Education 

Associate Professor, 

Mathematics Department,  

Public University 

14 Years – High School 

10 Years – University*  

Amber Ph.D. in Curriculum 

and Instruction 

 

Assistant Professor,  

Education Department,  

Private Liberal Arts College 

4 Years – High School 

9 Years – University*  

Ted Ph.D. in Curriculum 

and Instruction 

 

Associate Professor,  

College of Education,  

Private University 

4 Years – Middle Grades 

11 Years – High School 

9 Years – University* 

Nick Ph.D. in 

Mathematics 

Associate Professor, 

Mathematics Department,  

Public Liberal Arts University  

18 Years – University* 

 

Nora Ph.D. in 

Mathematics 

Education 

Assistant Professor, 

Mathematics Department,  

Public Research University 

3 Years – Middle Grades 

9 Years – University* 

 

*May include time as a doctoral student and teacher assistant 

Data Collection and Analysis 

  Utilizing multiple sources of data supported an in-depth understanding in this multiple case 

study (Creswell, 2018; Yin, 2018). The primary measures in this study included the (a) MTE 

Background Information Survey, (b) Teacher Action Q-Sort (Franz, Wilburne, Polly, & 

Wagstaff, 2017; Wilburne, Polly, Franz, & Wagstaff, 2018), and (c) MTE interviews. Artifacts 

including MTEs’ instructional notes and activities related to the most focused upon MTPs were 

also collected to provide context. The MTE Background Information Survey was utilized to 
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collect descriptive data related to participants’ experiences and teaching practices. The survey 

required MTEs to rank the MTPs (NCTM, 2014) from the practice most focused upon in their 

SMMCs to the practice least focused upon. From the participants who completed the survey, six 

cases were selected for additional in-depth data collection. The Teacher Action Q-Sort was then 

utilized to collect information from the cases related to the MTPs (NCTM, 2014) focused upon 

in their SMMCs. The Teacher Action Q-Sort was initially designed such that teachers place 37 

Teacher Actions Statements related to the MTPs on a forced Q-Sort grid, ranking the actions 

from those least characteristic of a teacher’s classroom to most characteristic of a teacher’s 

classroom (Franz et al., 2017; Wilburne et al., 2018). For the current study, the Teacher Action 

Q-Sort was adapted so that MTEs ranked the 37 statements from those that were least focused 

upon with preservice teachers in their SMMC to those that were most focused upon. The MTEs 

sorted the statements to determine which ones were areas of focus for preservice teachers’ 

learning as future teachers. This provided additional information to examine which MTPs 

(NCTM, 2014) were most focused upon in the SMMCs. Lastly, the researcher conducted an 

interview of each case and collected artifacts to learn more about the MTEs’ experiences and 

practices related to focusing on these MTPs with preservice teachers. The interview was made up 

of 14 questions; it was designed to explore instructional decisions related to focusing on 

particular MTPs, including reasons for MTEs’ selections and designing and planning for 

teaching content in SMMCs. The researcher examined responses from both the MTE 

Background Survey and the analysis of the Teacher Action Q-Sort (Franz et al., 2017; Wilburne 

et al., 2018). Further, the researcher sought clarification in the interview when the most focused 

upon MTPs (NCTM, 2014) indicated by the measures did not seem to be aligned for an MTE.  

Data was transcribed as needed and read multiple times by the researcher. The researcher 

utilized the MTPs (NCTM, 2014) to conduct initial coding of the data. A coding team including 

the researcher and two doctoral students analyzed the interview transcripts to enhance the 

validity of the study. One interview transcript was randomly selected and independently coded 

by each member of the coding team. The researcher then met with the team to agree upon codes. 

The researcher independently coded each of the remaining interviews, and the two remaining 

team members were each assigned four of the eight MTPs to code the remaining interviews. The 

researcher then met with the team again to compare findings. Constant comparative analysis of 

the remaining measures was used to compare the analysis to any emerging categories (Creswell, 
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2018). Axial coding was utilized to allow for consideration of divergent codes so that the 

researcher could identify any additional themes. A cross-case analysis, in which the researcher 

sought to build an explanation that fit each case, was conducted to lead the researcher to themes 

that conceptualized the data (Merriam, 2009). Member checking was utilized for each case. 

Findings 

 The researcher reviewed the most focused upon MTPs (NCTM, 2014) in each case’s SMMC 

according to the MTE Background Information Survey, the Teacher Action Q-Sort (Franz et al., 

2017; Wilburne et al., 2018), and the interviews. Taken together, and confirmed by the member 

check, the measures revealed which MTPs (NCTM, 2014) were most focused upon with 

preservice teachers in SMMCs (see Table 3).  

Table 3 

Most Focused Upon Mathematics Teaching Practices 

Cases MTP 1 MTP 2 MTP 3 MTP 4 MTP 5 MTP 6 MTP 7 MTP 8 

Tammy   X      

Natalie     X   X 

Amber X X       

Ted X    X   X 

Nick  X  X     

Nora  X       

 

The analysis of the most focused upon MTPs revealed three key themes from across the data. 

 First, it is noticeable that when the cases are organized by the MTPs, MTEs seem to value a 

variety of these practices when making decisions related to their SMMCs. While MTP 2: 

Implement tasks that promote reasoning and problem solving is one of the most focused upon 

practices self-reported by the cases, it was selected only by three of the six cases, namely Amber, 

Nick, and Nora. Data analysis revealed that while this practice was selected by these three 

MTEs, they focused on this practice for different reasons. Amber focuses on MTP 2 because it is 

not addressed in any other courses in her teacher preparation program. Further, she explained 

that many preservice teachers in her course are already familiar with direct instruction in 

mathematics but need exposure to project-based learning, real world problems, rigorous 

mathematical content, and critical thinking. Nick utilizes rich tasks as a vehicle for supporting 

many other practices, such as MTP 4: Facilitate meaningful mathematical discourse, and 

explained that doing mathematics is about reasoning and problem solving, looking for 

connections, and explaining and justifying the work. Similar to Nick, Nora believes she should 
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develop preservice teachers’ understanding of teaching mathematics in a methods course as they 

learn to pose better tasks so that they have a chance of “actually glimpsing something cool” that 

opens the door for addressing other practices such as multiple representations.  

 It seems important to consider that MTP 2: Implement tasks that promote reasoning and 

problem solving was shown to be one of the most focused upon teaching practices for three of 

the six cases. While Amber indicated that focusing on this practice was important because it was 

not addressed in other courses, both Nick and Nora saw it as a way to address other teaching 

practices. Nick and Nora were the only two cases who had limited experience teaching in the 

secondary grades. While Nick taught mathematics education content courses at the university 

level, Nora taught mathematics in the middle grades. Further, Amber had the next least amount 

of high school teaching experience. The focus on MTP 2 by these MTEs seems to highlight its 

importance. Further, it is possible that MTEs with limited experiences teaching at the secondary 

level consider it to be particularly important to focus on with preservice teachers in SMMCs 

because it allows the MTEs to address other practices through the lens of rich tasks. 

The second key point highlighted by Table 3 is that MTP 6: Build procedural fluency from 

conceptual understanding and MTP 7: Support productive struggle in learning mathematics were 

not identified as the most focused upon practice by any of the cases in this study. Many of the 

MTEs indicated that these practices are addressed in preservice teachers’ other courses or field 

experiences, not the SMMC, and some MTEs explained that they address these practices in 

SMMCs through the lens of other practices. It is interesting that even though a variety of 

practices were selected to be the focus in SMMCs, these particular practices were not selected.  

Third, two MTEs saw a connection between MTP 5: Pose purposeful questions and MTP 8: 

Elicit and use evidence of student thinking. While other connections among the MTPs were 

highlighted by the cases, it is of note that both Natalie and Ted selected these two particular 

practices to serve as focuses in their SMMCs while highlighting slightly different reasons for the 

connections between them. Natalie shared that “the way to do a good job of eliciting what your 

students are thinking is to pose questions that do that for you.” Ted explained that as preservice 

teachers move from focusing on the mathematical goals to focusing on student mathematical 

thinking, this impacts the questions they ask to elicit and use that thinking. Further, Natalie 

believes it is crucial to begin with students’ prior knowledge, and she works with preservice 

teachers to be able to elicit and use evidence of student thinking so that they can help their own 
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students to move forward in their learning. Ted indicated that MTP 8 is a high-leverage teaching 

practice that supports the other practices. He explained that focusing on eliciting and using 

evidence of student thinking requires the use of high cognitive demand tasks and for preservice 

teachers to attend to students’ progress toward meeting goals. Ted sees this as a way to support 

preservice teachers in becoming new teachers and so that they will continue to learn from their 

own teaching as they reflect on and modify lessons to support student understanding.  

Discussion and Implications 

Findings suggest that MTEs who teach SMMCs focus on a variety of MTPs (NCTM, 2014) 

with many electing to focus on MTP 2: Implement tasks that promote reasoning and problem 

solving. Three of the six cases focused on MTP 2 and address it for a variety of reasons, 

including that it is not addressed in any other courses in their teacher preparation program, the 

belief that preservice teachers are familiar with direct instruction but need exposure to rich tasks, 

that it is fundamental to mathematics, and that this practice is a vehicle for supporting other 

practices. Yee, Otten, and Taylor (2018) conducted a survey sent to all active members of AMTE 

to determine what topics were broadly valued across the field according to teachers of SMMCs. 

They found that adapting, choosing, and generating mathematical tasks was in the top five of 41 

valued items, following understanding of practices/process standards, multiple representations 

of mathematical ideas, attending to student thinking and using student ideas to push 

understandings forward, and mathematical knowledge for teaching. It seems the current study 

can provide evidence to support Yee and colleagues’ (2018) findings related to the importance of 

mathematical tasks. However, this study provides evidence that MTP 2 may be focused upon 

more than multiple representations or attending to student thinking and using student ideas.  

During the interviews, some cases indicated that they were surprised at discoveries based on 

their reflections, such as when a MTE’s initial ranking of the MTPs on the MTE Background 

Information Survey did not seem to align with the Teacher Action Q-Sort (Franz et al., 2017; 

Wilburne et al., 2018). Perhaps the most pressing recommendation related to the current study is 

that MTEs should analyze and reflect on the MTPs (NCTM, 2014) that are most focused upon in 

their own courses and why. This could result in making adjustments to align course syllabi and 

tasks to MTEs’ desired focus for preservice teachers’ learning. Future research related to 

SMMCs could build on the work of this study. Additional exploration related to the MTPs most 

and least focused upon based on factors such as faculty rank, years of experience as a MTE, or 
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teaching experience with various grade bands should be conducted. Observations of MTEs 

teaching SMMCs or data related to preservice teachers, such as classwork, could provide an 

additional lens to further examine MTEs’ practices. It may also be important to conduct similar 

studies with MTEs and elementary or middle grades mathematics methods courses.  
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The purpose of this paper is to share research on the dialogue of teachers related to the 

Standard for Mathematical Practice 5 during the post-lesson debrief of Lesson Study.  Lesson 

Study debriefs were recorded and transcribed for teacher teams conducting Lesson Study to 

improve students’ mathematical problem solving.  Inductive analysis was used to find 

similarities and differences between teacher dialogues about the SMPs.  Conclusions and 

implications about teachers’ dialogue are shared. 

 

Introduction 

In 1999, Stigler and Hiebert’s book titled, The Teaching Gap, called for lesson study to be 

tried and tested in the United States (p. 131).  Since that time, several researchers have shown 

that when it is implemented well and for sufficient duration, similar positive results to Japanese 

lesson studies are found (Lewis & Hurd, 2011; Lewis, Perry, & Hurd, 2009).  Teachers who 

enact lesson studies provide an authentic window through which researchers can understand 

teacher professional decisions and thinking.  Of particular interest in this study are the 

conversations teachers have during the debriefing stage of a lesson that incorporated the 

promotion of at least one Standard for Mathematical Practice (SMP; CCSSI, 2010).  Through the 

lens of teachers’ authentic dialogue about students’ learning and the lessons that develop 

students’ learning abilities, we consider what is understood about SMP 5 and how teachers use 

those understandings to improve instruction.  For the purpose of this proceeding, we focus on 

teachers’ dialogue about SMP 5, “Use appropriate tools strategically” (CCSSI, 2010). 

Related Literature 

Lesson Study 

Lesson Study is a “comprehensive and well-articulated process for examining practice” 

(Fernandez, Cannon, & Chokshi, 2003, p. 171) and a method of professional development that 

encourages teachers to reflect on their teaching practice through a cyclical process of 

collaborative lesson planning, lesson observation, and examination of student learning (Lenski, 

Caskey, & Anfara, 2009).  Lesson study allows teachers to view teaching and learning as they 

occur in the classroom.  There is not a singular approach to all lesson studies.  For the research 

conducted here, the approach to lesson study is based on Lewis and Hurd’s (2011, p. 2) cycle of 
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studying curriculum and formulating goals, planning the research lesson, conducting the research 

lesson, and reflecting.  The first stage, studying curriculum and formulating goals, stems from 

the Japanese term kyozaikenkyu, in which teachers should take the time to study curriculum, 

materials, and standards to help develop the research lesson.  Also in this stage, teachers should 

formulate short-term and long-term goals for what they hope students learn.  The second stage, 

planning the research lesson, requires teachers to use a critical lens to determine what aspects 

should be incorporated into the research lesson and why those aspects are the best ways for 

students to reach the goal of the lesson.  The third stage, conducting the research lesson, consists 

of one team member from the lesson study group teaching the research lesson to a group of 

students while the other team members observe the lesson.  These team members typically 

follow an agreed upon observation protocol and do not interact directly with the students.  The 

final stage of the lesson study cycle, the debriefing stage, is a time for teachers to reflect and 

discuss their observations, considering improvements that could be made to better student 

learning.  Following the debriefing stage, the lesson study team has the option to re-teach the 

research lesson using the observations and modifications to learn from a new set of students.     

Debriefing Phase of Lesson Study 

During the debriefing phase of lesson study, also known as the post-lesson discussion, the 

team of teachers and any other outside experts who observed the lesson will engage in reflection 

about the lesson.  While debriefing, the teachers are assessing student learning, what aspects of 

the lesson promote student learning, and what can be done better in the future to improve their 

practice (Lewis & Hurd, 2011; Takahashi & McDougal, 2016).  Before beginning to debrief as a 

group, the lesson study group members should take time to reflect individually and gather their 

thoughts to ensure their discussion stays organized and focused; this debrief should not become a 

retelling of the lesson.  Prior to starting, Lewis and Hurd (2011) recommend that the team create 

a set of norms to ensure the discussion is respectful of all participants and no one teacher feels 

singled out.  All members should understand it is a group effort and they have shared 

responsibility for this lesson.  Lastly, it is crucial that this phase focuses on student learning and 

data recorded, not personal feelings and judgements on the teacher (Lewis & Hurd, 2011). 

Standards for Mathematical Practice (SMPs) 

The SMPs were incorporated as part of the Common Core State Standards Initiative (CCSSI) 

in an attempt to promote consistent learning goals across states (CCSSI, 2010).  These standards 
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were enacted to promote students’ mathematical proficiency for readiness and preparation as 

they advanced toward their college and career paths.  The SMPs provide specific processes and 

proficiencies that mathematics educators should be integrating throughout their instruction and 

facilitation of student learning (CCSSI, 2010).  They place the focus of the learning on the 

students, and key components of mathematical knowledge are interwoven throughout these 

practices, which include problem solving, reasoning, representation, productive mathematical 

discourse, conceptual understanding, and procedural fluency.  There are a total of eight SMPs.  

For the purposes of this proceeding the focus will be on SMP 5.  

SMP 5: Use appropriate tools strategically.  SMP 5 focuses on the importance of giving 

students opportunities to consider available tools and decide which tools would be helpful in 

various problem solving situations (Bostic, Matney & Sondergeld, 2019; CCSSI, 2010).  

Allowing students the space to select a tool that is appropriate and demonstrate the tool’s use 

strategically is a fundamental component of this SMP.  It would be a misconception of the intent 

of SMP 5 to assume that if students are using tools, for any reason, then they are necessarily 

engaging in SMP 5.  Mathematically proficient students should become accustomed to making 

sound decisions about the situations in which specific tools might be most beneficial while also 

recognizing the limitations of each (CCSSI, 2010).   

Methodology 

The research here considers the authentic context of teacher dialogue that develops after 

teams of teachers plan and enact lessons together.  The research question is:  What does teacher 

dialogue in the debriefing phase of lesson study reveal about teachers’ understanding of SMP 5? 

Context 

Participants and lesson study design.  There were 52 teachers involved in the research, all 

residents of the same state in the mid-west.  All teachers taught in K-5 classrooms and ranged in 

professional experience from two years to thirty-one years.  The participants were solicited to 

join a one-year project focused on developing students’ mathematical problem solving 

(Inprasitha, 2015).  The 52 participants constituted 12 lesson study teams that elected to join the 

project.  The teams consisted of teachers from across the grade levels of K-2 and 3-5.  There 

were six K-2 teams and six 3-5 teams.  All but one of the teams consisted of teachers from the 

same school.  The participants had two days of professional learning about the process of lesson 

study and problem solving (Changsri, 2015; Isoda, 2015; Kadroon & Inprasitha, 2013).  
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Additionally, participants read and discussed Lewis and Hurd’s (2011) Lesson Study: Step by 

Step.  Participants developed norms to keep their lesson study focused and professionally 

respectful throughout the planning and debriefing phase discussions (Lewis & Hurd, 2011).  

Next, the 12 teams of participants enacted two full lesson study cycles during the one-year 

project; one lesson study took place in the fall semester and one in the spring semester for a total 

of 24 lesson studies.  Each team spent between six and eight hours researching ideas involving 

student learning in the content domain Operations and Algebraic Thinking and consisting of at 

least one SMP (CCSSI, 2010).  The teams constructed their collaborative research lesson toward 

the end of this research and development time.  Each team taught and observed students’ 

mathematical thinking and problem solving during the lesson and then met immediately 

afterward to reflect and revise.  Then, the team taught, observed, reflected, and revised a second 

time with a new group of students in the same day.  At the end of these two teaching cycles the 

teams reflected on their own professional learning.   

Background and incorporation of the SMPs in the project.  The SMPs had been part of 

the state standards for seven years prior to the start of the research, and all participants indicated 

that they were aware of the state’s expectations for promoting the SMPs during instruction.  The 

participants were asked to use their knowledge of the SMPs in two ways:  focus on the 

promotion of at least one SMP during the collaborative research lesson planning phase and 

discuss, during the debriefing stage, whether or not there was any evidence of the SMPs being 

enacted by students.  In preparation for the post-lesson discussion, a debriefing protocol was 

developed during the project based on teachers’ reading of Lewis and Hurd (2011, p. 57-64).  

Though questions and focuses varied by team during these discussions, each debriefing protocol 

had the question “What evidence is there that the lesson provided an opportunity for student 

engagement in mathematical proficiencies (SMP's)?” for each participant to reflect on and 

discuss with their team. 

Data and Analysis 

Each of the written and revised collaborative research lesson plans were collected, as well as 

videos of each post-lesson debrief session.  The videos totaled more than 19 hours of teacher 

discussion about the enacted lesson and revisions that needed to be made to improve students’ 

mathematical learning. To answer the research question, videos were transcribed and an 
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inductive analysis (Hatch, 2002) was performed on the resulting text. Figure 1 shows the step-

by-step process taken when analyzing the debrief sessions.   

 

Figure 1. Steps taken in the analysis of debriefing sessions. 

Findings 

The inductive analysis reveals three themes from the dialogue of participants.  Teams made 

very few connections to SMP 5 despite the structural opportunity to discuss such things through 

the Lesson Study process.  Teams lacked an SMP 5 mindset when thinking about the use of tools 

in their lessons.  Teams who focused directly on SMP 5 revealed misunderstandings about its 

expectations.  These themes are explicated below. 

Few Connections to SMP 5 

Overall, data revealed that the majority of teams missed opportunities to discuss and 

implement direct connections from SMP 5 into their lessons to foster student sense making 

during problem solving.  Throughout each debriefing session, the teams suggested changes to 

their research lesson.  Each team was asked to have a focus SMP for their research lesson and 

had a debriefing protocol which included discussing evidence of student engagement in any of 

the SMPs.  Seven of the 24 lessons stated SMP 5 as the focus.  However, tools could have been 

used by students to makes sense of the problems in each of the 24 lessons.  Dialogue occurring 

among 21 of the 24 lessons missed connections about how using tools could have strategically 

benefited students in solving the problems.  During the 24 debriefing sessions only one group 

used language from SMP 5 in their discussions about tools.  Although seven teams directed their 

focus toward SMP 5, less than half had dialogue that discussed tools in ways related to SMP 5, 

including: the need to provide manipulatives for students to select and use (Team 4; Team 8) and 

give students time to learn the manipulatives before the research lesson is conducted (Team 1; 
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Team 8).  These two changes relate to the appropriate use of tools and opportunity to understand 

a tool as a strategic choice. 

Lack of SMP 5 Mindset     

Teams also made several suggested changes involving tools that did not necessarily promote 

SMP 5 but held potential if the teams shifted their mindset toward improving students’ 

mathematical proficiencies.  Five out of 12 teams suggested changes that were potentially related 

to SMP 5.  These changes include: take away manipulatives that were offered in the first 

teaching (Team 1; Team 10), change the manipulative being offered (Team 5; Team 10), and 

give a specific manipulative directly to each group (Team 6; Team 7).  In each of these cases, 

discussion by the teams were focused on classroom management and not on students’ strategic 

and appropriate use of tools to improve their mathematics proficiency. 

Participants struggled to engage their students in SMP 5.  More often than not, participants 

gave students specific tools to use for specific purposes, and this caused the students to focus on 

what should be done with the tool instead of making sense of mathematics.  Additionally, some 

students made sense of the mathematics but became confused at how the tool was supposed to 

help.  One example of this comes from Team 8 in speaking about observation of a student who 

“knew that there was supposed to be eight bears, she didn’t understand” how to use them to help 

her.  Other students tended to use the tools inappropriately, as a game for making patterns, which 

participants said inhibited learning.  This was challenging for participants because they had not 

thought to look into this issue during research and planning.  Having given the tools to students 

for a specific purpose, without enough time for students to make sense of the tool itself and ideas 

it may be connected to, the participants observed, “what it [tools] became was a game to make 

designs” (Team 2). 

Misunderstanding SMP 5 

Analysis of dialogue from the debriefing sessions revealed that the participants focusing on 

SMP 5 held the belief that if the students were using manipulatives, this represented a convincing 

argument for evidence of SMP 5 during the lesson.  For example, the only group who used SMP 

5 language in their dialogue began the discussion by stating, “And you [T1] provided 

opportunity…for appropriate tools,” which another teacher responded to by stating, “Right. They 

might not have necessarily all used them correctly, but you used them” (Team 10).  

Conversations like this one revealed that participants may not view the appropriate and strategic 
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use of tools as an imperative aspect of the lesson.  In the statements made by the participants, the 

perceived importance of the lesson giving students opportunities to use tools, whether or not they 

were using them appropriately and strategically, demonstrates a lack of participant understanding 

of the expectations of SMP 5. 

Discussion 

Teachers need time to more fully understand and implement pedagogical strategies that 

promote SMP 5.  This would include giving students time to become familiar with new 

manipulatives before using them in the classroom to understand how they can be used 

appropriately and strategically.  Teaching professionals should think carefully about the 

introduction of manipulatives, as tools for problem solving and making sense of mathematics, 

and not simple objects of manipulation.  The understanding of tools in the former sense opens 

students up to thinking about the tool as appropriate or not and for what strategic purpose they 

are using the tool.  In our findings, teachers did not discuss the idea of giving the students the 

opportunity to decide which tools they felt would be of most benefit to them.  The teams 

demonstrated the belief that as long as tools were provided for the students, they were 

encouraging student engagement in SMP 5.  However, we contend that evidence of a students’ 

mathematical proficiency, in the essence of SMP 5, means that students astutely consider the 

tools’ appropriateness for themselves and choose the tools in connection with their own strategic 

trajectory for solving the problem.  This must be done with tools appropriate to the context, such 

as using a protractor to measure a needed angle rather than a ruler.   

Conclusion 

In this study we consider teachers’ dialogue about lessons in which at least one SMP was 

their focus and all teams could have provided access to tools for their students’ problem solving.  

Although seven teams directly focused on SMP 5 and the SMPs were part of the teachers’ 

standards for seven years, our findings revealed that implementing and promoting SMP 5 during 

instruction was professionally challenging.  The one team that used language directly from SMP 

5 showed a lack of understanding of what constitutes evidence of student engagement in SMP 5, 

in that, the teachers believed simply using the given tools as directed by the teacher constituted 

evidence for SMP 5.  Furthermore, the teams who used tools encouraged the students to use the 

tools as a form of manipulation or representation but not as a means to make mathematical sense 

of the problem.  Teachers need time to reflect more deeply upon SMP 5 and acquire a thorough 
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understanding of how to best promote it among students.  Following these lessons, we 

recommended to the participants that they consider conducting lesson studies focused on 

researching and understanding SMP 5.  The implementation of tools in the classroom should 

supplement effective pedagogy, and to accomplish this, teachers need to work together to find 

effective ways to utilize tools to promote understanding and success for students’ problem 

solving. 
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There is emerging evidence that responsive teaching, characterized by instructional practices 

that elicit and connect student thinking to disciplinary ways of reasoning, has many affordances. 

As such, it is important to better understand this type of teaching. We contribute to this literature 

by investigating a case where a teacher used students’ ideas to advance the mathematical 

agenda, yet her students failed to develop a meaningful understanding of the content. This 

examination resulted in the identification of an instructional practice critical to responsive 

teaching, leveraging, which we characterize and contrast with a similar, less productive practice 

of endorsing.  

 

Spurred by the 1989 standards (National Council of Teachers of Mathematics, 1989), 

researchers (e.g., Ball, 1993) began presenting educators with images of a new form of teaching 

in which teachers elicit and connect student thinking to disciplinary ways of reasoning, what is 

often referred to now as responsive teaching. In the intervening decades, researchers have 

provided evidence of the benefits of responsive teaching, namely that it can improve student 

learning outcomes (Pierson, 2008), develop conceptual understanding (Fennema et al., 1996), 

and promote more equitable participation (Empson, 2003). More recently, as the impact of 

responsive teaching has become more established, scholars have worked to better characterize 

and conceptualize such thinking (see Robertson, Scherr, & Hammer, 2016). Nonetheless, it 

continues to be important for researchers to gain insights into the processes by which responsive 

teaching leads to the desirable outcomes previously identified. 

One such effort, providing a potential model for better understanding these processes was 

offered by Singer-Gabella, Stengel, Shahan, and Kim (2016). They studied three novice teachers 

who varied considerably in their implementation of teaching practices consistent with responsive 

teaching. Studying teachers engaging in a range of such practices created contrasts that 

highlighted sources of tension in learning to teach responsively. By studying teachers with a 

range of abilities to implement responsive practices, as opposed to just teachers who do it well, 

the contrasts highlighted critical components of responsive teaching that help bring about the 

desired outcomes. Similarly, we examined the practices of a teacher who had an orientation and 

goals consistent with responsive teaching yet was still grappling with its implementation. In 
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particular, we answered the following research question: In what ways does a teacher elevate and 

connect different examples of student thinking in her instruction and how do these choices relate 

to students’ subsequent reasoning?  

Methods 

Our goal was to study the practices of a teacher whose teaching was grounded in student 

thinking, but who was somewhat new to responsive teaching and consequently still grappling 

with how to productively coordinate a wide range of ideas to support all students in developing a 

thorough understanding of the content. While we anticipated seeing many practices associated 

with the images of responsive teaching put forth in the literature, we also wondered in what ways 

her instruction would differ given her lack of experience with such teaching. We conjectured that 

investigating connections between her practice and students’ subsequent reasoning would reveal 

specific ways in which she had effectively leveraged and connected students’ varying conceptual 

resources, but also ways she might have missed opportunities to do so. We hoped this would help 

us understand the critical features of responsive teaching. To do this, we first examined the 

students’ resulting reasoning and then used this to guide our analysis of the teacher’s practice. 

Data Collection 

We first identified a teacher, Ms. White1, from participants in a week long professional 

development (PD) session we held during the summer. The session focused on developing 

teachers’ capacity to teach figural patterns (see Figure 1). Specifically, we supported teachers in 

using these tasks by introducing them to an instructional trajectory aimed at engendering in 

students a quantitative understanding of algebraic symbols through generalization. In the PD 

session, we suggested specific activities the teachers might use while teaching this unit and had 

the teachers rehearse (Lampert et al., 2013) these activities. From these rehearsals we could see 

that Ms. White possessed a strong understanding of the content and was comfortable 

orchestrating a whole class discussion. She had 9 years of experience and was teaching in a Title 

1 middle school at the time of the study.  

 

 

 

Figure 1. An example figural pattern. 

                                                           
1 All names in this report are pseudonyms. 

    Stage 1        Stage 2      Stage 3 
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According to our instructional trajectory, students explored figural patterns by first drawing 

future stages of the pattern, then writing and sharing verbal descriptions of future stages, then 

writing numeric expressions (e.g., 3+3+3+3+3+1 or 5+6+5 for Figure 1), and finally a general 

algebraic expression (e.g., 3n+1 or n+(n+1)+n). These activities were meant to help students 

impose structure on the figural patterns (Hawthorne & Druken, 2019), make that structure 

explicit through whole class discussions, and then represent the quantities in the structure with 

numbers and variables.  

Ms. White then implemented the activities we had rehearsed in the PD session over three 

days of instruction in her class. During this time, the students explored three different figural 

patterns. The first pattern is shown in Figure 1; the second was a growing H (see Figure 4); and 

the third was a growing W. We videotaped her instruction over the three days and used this video 

as the main source of data to analyze her instruction. 

On the last day of instruction, we interviewed 7 students after class to better understand how 

they could reason about figural pattern tasks. In the interview, we presented students a new 

pattern (Figure 2) and asked them to write numerical expressions for how they were seeing it as 

well as a general algebraic expression. We followed-up with probing questions to investigate the 

meaning each student had of the symbols in their expressions (Ginsburg, 1997). 

 

 

 

 

Figure 2. The pattern for the interview task. 

Data Analysis 

 We started by analyzing the student interview data to understand the nature of student 

reasoning. This understanding informed our analysis of the classroom data, as we looked for 

attributes of the instruction that helped explain why students were reasoning in the ways they 

were in the interviews. We used a constant comparison method looking between subjects to 

identify trends and differences in reasoning (Strauss & Corbin, 1994). This gave rise to an initial 

set of codes, which was then refined through multiple iterations analysis and discussion. In our 

analysis we identified both common conceptual resources and common difficulties. 
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The results from the interview data guided our analysis of the classroom data. In particular, 

the interview data revealed that students seemed to have unproductive implicit rules that guided 

how they broke down the figure so they could create the algebraic expression. To explain these 

trends in unproductive ways to decompose the figure, we analyzed the classroom discourse. We 

first created descriptive accounts of the three days of instruction (Miles & Huberman, 1994), 

which we split into episodes. We marked any episode where a decomposition of a figure was 

presented in whole class. We then noted how each decomposition was treated in the discourse 

(e.g., if it was ignored, compared with other decompositions, used to develop an algebraic 

expression, etc.). We also marked episodes where explicit reflective talk about decompositions 

occurred. This allowed us to see both the explicit and implicit messages communicated to 

students about how to strategically decompose a figure to write an algebraic expression and how 

Ms. White used student contributions to communicate these messages. 

Results 

We intended for the interview task to necessitate adaptive reasoning to generalize and 

communicate the perceived structure of the figural pattern. While the task was closely related to 

the work the students had done over the previous three days, we saw it as slightly more difficult 

because a connection between differing decompositions and the stage number was less obvious. 

Despite this challenge, students demonstrated a variety of productive ways to think about the 

task and emergent understanding about meaningful interpretations of the symbols in the 

numerical and algebraic expressions. However, six of the seven students struggled to use their 

understanding to ultimately provide a correct algebraic expression. Their difficulty seemed to 

stem from their inability to integrate their own productive ways of reasoning with the ideas and 

approaches expressed during instruction of this unit. In this report, we focus on their inability to 

use their initial productive decompositions to create an algebraic expression, relying instead on 

unproductive implicit rules they gleaned from participation in class discussions.  

Adopted Norms for Decomposing 

Students’ norms for decomposing seemed connected to their understanding of algebraic 

symbols. In general, it seemed students saw the mn+b form as a template to be filled in. Thus, 

they created rules for the meaning of these symbols (e.g., m was the number of n sized groups) 

and would decompose the figure accordingly to extract these values. Most notably they believed 

that the group size must equal the stage number and sought to impose this structure on the 
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pattern. The coefficient then would represent the number of groups and the constant term was 

interpreted as the remaining pieces by some students and the change between stages by others. 

Only one student was able to use these rules successfully on the task, grouping the figure into 

three groups of size n, with three blocks leftover to create the expression 3x+3. For the other 

students, these inferred rules seemed to interfere with their productive reasoning as they altered 

their initial ideas to comply. 

For example, while Madelyn had identified an explicit relationship between her 

decomposition of the figure and the stage number, her attempt to fill in the template resulted in 

an incorrect algebraic expression. Initially, she had created groups whose size was one more than 

the stage number and was able to generalize this relationship when asked to write numeric 

expressions. She correctly wrote the expression 7 + 7 + 7 for stage 6 and 33 + 33 + 33 for stage 

32.  However, when asked for an algebraic expression, she said it should be 3x + 2, explaining,  

The three is the number of sections that you would divide it into; the x is the number of, like 

the number of dots in the section in the stage; and the 2 is the number of dots you are adding 

on.   

After demonstrating such a rich understanding of the figure, such an abrupt and disconnected 

interpretation was quite striking. Two other students’ initial decompositions were also not of the 

form m groups n, but then slowly reinterpreted the figures to align with these rules.   

In addition, students’ responses indicated they were not clear on the purpose of decomposing. 

For example, Leanne seemed to arbitrarily circle groups. After previously correctly generalizing 

the pattern recursively, she circled the figure in two completely different ways when asked for 

numerical expressions for stage 4 and 6 (see Figure 3). Moreover, neither of her expressions 

related to her previous way of thinking nor the stage number. For stage 4, she circled 3 groups of 

4, writing the expression 4(3) + 3 and for stage 6, she circled 4 groups of 5, writing 5(4) + 1. In 

both cases, she identified the first number as representing the dots per group, the second number 

as the number of groups, and the last number as the extra dots. When asked about her method of 

grouping, she explained, “I was just grouping it around to make it easier.” She seemed to circle 

not to impose structure that could be used to find explicit patterns, but to arbitrarily identify 

groups to satisfy the rules for creating an expression she had inferred. In general, while the 

students demonstrated a strong potential for generalizing figural patterns and used various 

representations to communicate their understanding, their perceived rules for the meaning of 
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symbols and lack of clarity around the role of decomposing seemed to stymie their productive 

thinking. 

 

 

 

 

Figure 3. Leanne’s decomposing and numerical expressions for stage 4 and 6. 

Instructional Foci and Missed Opportunities   

 Students’ unproductive norms for decomposing can be partially explained by the types of 

decompositions that were explored in class. In particular, while Ms. White allowed all students 

to share their thinking, she only engaged mathematically with decompositions that mapped onto 

the form mn+b, failing to support students struggling to decompose or confront less strategic 

ways of decomposing. For example, when exploring the second pattern, Ms. White had 4 

volunteers share their view of the pattern: one where the student saw the middle piece as a 

groups of size n and the four other pieces growing recursively (Figure 4A), one where the 

student saw five groups of size n (Figure 4B), one with the columns viewed as a single unit 

(Figure 4C), and one in which the groupings did not appear to be strategic (Figure 4D). Ms. 

White showed appreciation for the diversity of views, but did not make comparisons or 

connections between them. Instead, she erased each of these decompositions, choosing only to 

analyze the second one (of the form mx+b, Figure 3B). To emphasize the rationale behind such a 

decomposition, she turned to the two boys who had come up with this view and asked them why 

they circled these five groups. When the students did not reply, Ms. White answered her own 

inquiry saying, “because they all have the same amount.” Similarly, after the next student drew 

the H pattern with the columns interpreted as whole pieces (similar to 4C), Ms. White went back 

to the previous decomposition and asked students who used this method to clarify why they 

separated the two dots on the sides. After one student replied indistinctly, Ms. White revoiced his 

answer, “So you are keeping the top and bottom equal…and the middle equal. And so those were 

just on the ends extra.” Again, this implied that students should decompose the figure by always 

creating groups of size n. This occurred as students explored the last pattern as well, with the 

teacher encouraging students to create groups of size n, even when they initially saw the pattern 

in other productive ways.  
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A B              C                   D 

Figure 4A, B, C, and D. Decompositions presented in whole class for H pattern. 

Discussion 

While previous research shows that responsive teaching has great potential, researcher still 

lack detailed understanding to processes by which responsive teaching leads to desirable 

outcomes. By analyzing a teacher whose goals and intentions were consistent with responsive 

teaching, but was still learning to master the practice, we gained insights into some features of 

responsive teaching we posit are critical. In responsive teaching, the teacher centers instruction 

on student thinking and uses that thinking to move the mathematical agenda forward. In many 

ways, Ms. White did this. She created an environment where students were allowed to explore 

the growth in the figural patterns freely. She then had many students share out and celebrated the 

diversity of ideas. In interactions with students, she often said they did not have to follow a 

particular approach. Furthermore, the advancement of the mathematical agenda at the classroom 

level was always rooted in strategies that came from students. However, rather than drawing 

connections between the students’ various approaches, she selectively focused on certain 

strategies that she felt were productive while acknowledging, but not developing, others. We call 

this type of orchestration, where only a certain type of response is developed, endorsing since 

only specific strategies are endorsed, albeit implicitly, by the teacher. Such an instructional 

structure seemed to result in students making sense of the strategies that were being endorsed in 

unproductive ways (e.g., thinking that groups had to be of size n or interpreting the coefficient as 

always meaning number of groups). 

We contrast this type of orchestration with images existent in the literature where a variety of 

contributions, more representative of the range of ideas in the class, are presented with 

connections drawn between them. We call this type of orchestration leveraging. We hypothesize 

that students would have been more successful with the interview task if they had seen how their 
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personal ways of reasoning were connected to the methods being presented in class. In this 

instance, if the purposes for decomposing had been made more clear by highlighting how 

different decompositions could be represented using different algebraic expressions, students 

may have been able to more strategically decompose the figure and use algebraic expressions to 

capture their understanding of the relationships they saw between quantities. 

This means that to effectively teach “responsively” to the whole class, teachers must go 

beyond simply using student strategies to advance the mathematical agenda of the classroom. 

Rather, they must ensure that as the lesson moves forward, all students see connections between 

their personal ways of reasoning and the more sophisticated ways of reasoning that are being 

developed in class. By contributing to the identification of this critical feature of responsive 

teaching, we hope to help shape how teachers think about orchestrating discourse. In particular, 

we hope that as teachers anticipate various student strategies, they can also think about how a 

variety of ways of reasoning can be leveraged to develop more sophisticated understanding. 
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