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RCML History  
The Research Council on Mathematics Learning, formerly The Research Council for 
Diagnostic and Prescriptive Mathematics, grew from a seed planted at a 1974 national 
conference held at Kent State University. A need for an informational sharing structure in 
diagnostic, prescriptive, and remedial mathematics was identified by James W. Heddens. A 
group of invited professional educators convened to explore, discuss, and exchange ideas 
especially in regard to pupils having difficulty in learning mathematics. It was noted that there 
was considerable fragmentation and repetition of effort in research on learning deficiencies at all 
levels of student mathematical development. The discussions centered on how individuals could 
pool their talents, resources, and research efforts to help develop a body of knowledge. The 
intent was for teams of researchers to work together in collaborative research focused on solving 
student difficulties encountered in learning mathematics.  
  
Specific areas identified were:  
  
1. Synthesize innovative approaches.   
2. Create insightful diagnostic instruments.   
3. Create diagnostic techniques.   
4. Develop new and interesting materials.   
5. Examine research reporting strategies.  
  
As a professional organization, the Research Council on Mathematics Learning (RCML) 
may be thought of as a vehicle to be used by its membership to accomplish specific goals. There 
is an opportunity for everyone to actively participate in RCML. Indeed, such participation is 
mandatory if RCML is to continue to provide a forum for exploration, examination, and 
professional growth for mathematics educators at all levels.  
  
The Founding Members of the Council are those individuals that presented papers at one of the 
first three National Remedial Mathematics Conferences held at Kent State University in 1974, 
1975, and 1976.  
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Using the Equity-Oriented STEM Literacy Framework, we analyzed NASA’s Mars Curriculum 
within a curriculum criticism study through a deductive coding process. Curriculum criticism as 
a form of analysis allowed for an equity-oriented assessment. We identified the strengths and the 
areas that need attention to foster empathy, STEM identity development, and positive 
dispositions. Implications include ensuring that curriculum activities provide opportunities for 
students to see themselves, learn through perseverance, and foster critical thinking to solve 
authentic problems. 

  
A rapidly changing climate, escalating social inequalities, and the relentless pace of 

technological change are among the many challenges facing society. As today's kindergartners 

step into their high school graduation gowns, they are likely to encounter an even more complex 

world. Predictions suggest more extreme climate events, widening social rifts, and 

transformative technological innovations, particularly in automation and artificial intelligence. 

Mohr-Schroder and colleagues (2020) contend that these challenges make STEM education 

necessary to prepare students to be effective problem solvers and critical thinkers through real 

world learning experiences. Moreover, they feel students not only need to show competency in 

content areas but also connect them to solve complex problems.  

The norm in school instruction is isolated teaching of core subjects even though real world 

problem solving is an integrated application of multiple content knowledge bases (Honey et al., 

2014). In comparison to STEM instruction that is thought of as “working in the context of 

complex phenomena or situations on tasks that require students to use knowledge and skills from 

multiple disciplines” (p. 52). Because of this, STEM integration is promoted because solutions to 

authentic problems, such as economic, environmental, and social, are often interdisciplinary 

(English et al., 2016; Honey et al., 2014).  

Marginalized students (e.g., BIPOC students, multilingual learners, and students with 

disabilities) often experience impoverished teaching that is riddled with skill exercises and 
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procedures that do not promote higher order thinking (Delpit, 2012). Additionally, many STEM 

experiences lack connections and engagement of marginalized students. The lack of presence of 

diverse students in STEM education and disconnect from their experiences (Calabrese Barton & 

Tan, 2019) is problematic if we are seeking to prepare students for this ever-changing world. 

Students’ mathematics scores are improved when students are engaged in integrated learning 

experiences (Gadanidis et al., 2017; Gadanidis & Hughes, 2011). When we start young children 

in early STEM-based instruction, they have increased reading, writing, and mathematics scores, 

with evidence of gains for marginalized students (Sarama et al., 2018).  

Curricula outline students' learning opportunities (Milner, 2010). As we work to ensure high-

quality STEM opportunities for all students, curriculum analysis is necessary to ensure students’ 

opportunities and access to learn. Gao et al. (2020) conducted a systematic literature review of 

49 articles regarding STEM curriculum and found overall that materials need to be more explicit 

and systematic. They argue that how content in STEM curriculum is intersected, presented, and 

assessed needs to be clearly developed and laid out. Moreover, the learning process and 

supporting practices should be evident from congruent objectives and assessments highlighting 

the complexity of integrated STEM.  

To disrupt systems of oppression and privilege, it is important to ensure that criteria to 

support empathy, empowerment, dispositions, identity development, utility and applicability, 

critical thinking and problem solving are present in STEM curricula (Jackson et al., 2021) so 

students will be confident to be future change agents. By examining what is omitted from the 

curriculum, educators and students can identify and challenge biases, stereotypes, and power 

dynamics that limit opportunities for marginalized groups (Milner, 2010). For this curriculum 

analysis, we chose NASA’s Mars curricula. In a literature review of studies using Mars curricula, 

none focused on equity. Most studies investigated implications on implementing Mars curricula, 

showing positive learning effects (Pilla et al., 2021; Raghavan et al., 1998). Salmi et al. (2023) 

found that a Mars learning intervention had a positive impact on 11–13-year-olds. 

Purpose 

The purpose of our study was to examine NASA’s Mars curriculum with the Equity-Oriented 

STEM Literacy Framework to assess how it addresses the ability to produce societal change 

agents. More specifically, our study is guided by the following research question: What STEM 

equity-oriented strengths and opportunities exist within a NASA curricular unit about Mars? 
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Theoretical Framing 

We chose the Equity-Oriented STEM Literacy Framework to ground this study. Given the 

historical trends that STEM education should be accessible to all students, we chose a framing 

that promotes equity and access for all. The Equity-Oriented STEM Literacy Framework has six 

criteria that work together to provide experiences that prepare students to be societal change 

agents. The six criteria are the following: empowerment; empathy; dispositions; identity 

development; utility and applicability; and critical thinking and problem solving. To disrupt 

systems of oppression and privilege, it is important to ensure that these criteria are present in 

STEM curricula (Jackson et al., 2021). By examining what is omitted from the curriculum, 

educators and students can identify and challenge biases, stereotypes, and power dynamics that 

limit opportunities for marginalized groups (Milner, 2010). 

Methodology 

This qualitative study incorporated a curriculum criticism approach.  Curriculum criticism 

(Sherman & Webb, 1988) is an inquiry evaluation method that incorporates inclusion of 

appraisal to analyze curriculum with a critical perspective. Curriculum criticism reveals more 

than intended outcomes including deeper understandings and perspectives. The goal of critical 

criticism is “to reveal and explain the meaning and complexity” of the unit of analysis (p. 163). 

For this study, we sought to reveal if the chosen curriculum was equity oriented.  

Data Source 

We chose to analyze a series of STEM lessons from NASA’s Jet Propulsion Laboratory 

entitled Mission to Mars (NASA, n.d.). The standards-aligned unit developed by NASA guides 

students through a series of guided lessons to learn more about and plan a mission to Mars. The 

unit is composed of 90 resources broken into seven lessons: Learn About Mars, Plan Your 

Mission, Design Your Spacecraft, Launch Your Mission, Land on Mars, Surface Operations, and 

Sample Handling. Each of the seven lessons contains resources for educators, including educator 

guides, student projects, student articles, and student videos. While the focus of our coding was 

the educator guides, some guides linked to additional resources for students. 

Analysis 

Our deductive coding involved multiple rounds of analysis. After each round of coding, we 

met as a research team to discuss the coding process. Round One allowed us to narrow the scope 

of the data source, choosing to focus on NASA’s Mission to Mars unit and coding instances for 
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concepts from the Equity-Oriented STEM Literacy Framework. During Round Two, the team 

individually coded 20 portions from the data source and compared codes using Hypothesis (n.d.), 

a free social annotation browser extension. We created a group in Hypothesis that allowed us to 

collect each team member’s codes. Then, the team came to a consensus regarding the meaning of 

each of the criteria and our coding. In Round Three, we coded the rest of the Mission to Mars 

lessons separately and then created a table to come to a consensus on coding; if two or more of 

us aligned, the third coder broke the tie. We organized our data around codes from the Equity-

Oriented STEM Literacy Framework, with the coded text, and location for all codes with at least 

two coders coding the element from the educator’s guide the same (see Table 1).  

Table 1 

Steamy Mars Annotations 

Code Example Location 

Empathy "Try this STEM strategy card game to get students 

thinking like the NASA scientists and engineers 

working on these exciting missions to the Moon, 

Mars, and beyond, as they prepare to join the Artemis 

Generation." 

Educator Guide - 

NASA Space 

Voyagers: The 

Game 

STEM Identity       

Development 

"This project will help students understand the 

engineering process by allowing them to design a 

robotic insect for an extraterrestrial environment" 

Educator Guide - 

Design a Robotic 

Insect 

Critical Thinking 

and  

Problem Solving 

"The difficulty can be further increased by having 

students consider the movement of planets as they 

orbit the Sun. How can relays be placed to ensure 

information can be transmitted regardless of where 

two planets are relative to each other and the Sun. 

Educator Guide - 

Build a Relay 

Inspired by Space 

Communications 

 
Findings 

In our curriculum analysis of Mission to Mars, we sought to address the following question: 

What STEM equity-oriented strengths and opportunities exist within a NASA curricular unit on 
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Mars? Using the Equity-Oriented STEM Literacy Framework, we identified numerous strengths 

and opportunities present in the unit related to the six concepts in the framework: empathy; 

dispositions; STEM identity development; empowerment; critical thinking and problem solving; 

and utility and applicability. On the surface, it might appear that each lesson as a whole, 

addresses all of these criteria, but upon closer examination, we found that only three criteria 

(critical thinking and problem solving, utility and applicability, and empowerment) were present 

in the majority of the Educator Guides. Additionally, two criteria (empathy and STEM identity 

development) were present in about a quarter or fewer of the educator guides. 

The strengths we identified within Mission to Mars rest mostly in its promotion of critical 

thinking and problem solving, empowerment, and utility and applicability. In approximately 80 

percent of its Educator Guides, the unit promoted critical thinking and problem solving, 

providing students with many opportunities to apply their critical thinking skills to solve 

complex problems. Mission to Mars also promoted empowerment in approximately 80 percent of 

its Educator Guides, frequently giving students opportunities to collaborate with peers, have 

choice in how they approach content and solutions, and see role models from similar 

backgrounds. Utility and applicability were present in over two-thirds of the lessons, providing 

relevance for the content in its connection to space exploration and scientists’ experiences. This 

was often identified within the Background section of Educator Guides and provided contextual 

information to students about how the content of the lesson connects to NASA scientists.   

We also identified areas where Mission to Mars could be improved more thoroughly and 

consistently promote empathy, STEM identity development, and dispositions. Only nine percent 

of the Educator Guides provided students with an opportunity to connect with problems on a 

personal level and to understand the impact on others. Enhancing this aspect of Mission to Mars 

could provide transformative learning experiences that serve as a potential bridge for students 

who have otherwise encountered barriers to STEM (Jackson et al., 2021). Moreover, STEM 

identity development, which enables students to access the material from their cultural and 

linguistic position, connecting STEM content to their community and identity, was present in 

only 12 percent of Mission to Mars. Finally, Mission to Mars promoted productive STEM 

dispositions giving students opportunities to engage in hands-on, trial-and-error investigations in 

approximately half of its Educator Guides. Such dispositions are critical for demonstrating to 

students that STEM is a field for everyone (Jackson et al., 2021).   
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Discussion and Implications 

      STEM education aims to equip students with the necessary tools and mindsets to become 

active and engaged citizens who can leverage STEM learning to make a positive impact on their 

communities and the world. When students feel empowered and see their experiences reflected 

in the curriculum, learning becomes more inclusive and accessible for everyone. Developing 

and/or analyzing curricular materials through an equity lens, such as the Equity-Oriented STEM 

Literacy Framework, enables educators to ensure they are promoting an inclusive learning 

experience for all students. In STEM education, this sort of curricular criticism or audit is crucial 

to ensure that content goes beyond promoting critical thinking and problem solving. It should 

personally connect with students, to affirm their culture and identity, to remove barriers to 

STEM, and to empower them with the knowledge, skills, and confidence to use STEM to make a 

positive impact on their communities and the world.  

      Based on our analysis of Mission to Mars, we identified potential areas for greater attention 

and emphasis in STEM curricula, specifically ways in which materials promote empathy, STEM 

identity development, and productive STEM dispositions. For example, we feel that the Mission 

to Mars curriculum should include more opportunities for students to see themselves in STEM 

fields through more real-life examples of individuals working in these fields. Additionally, we 

suggest that the curriculum promotes productive STEM dispositions by including more activities 

that require trial and error and perseverance by students. In terms of these three criteria, the 

Mission to Mars curriculum needs to be more explicit and systematic (Gao et al., 2020). 
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Despite the importance of multiplicative reasoning (MR) in mathematics, there is limited 
empirical study of the role of MR in multi-digit multiplication tasks. This study examined 
children’s multiplicative reasoning within their use of partial products. This mixed methods 
study of 16 fifth-grade students revealed that half of participants did not attend to partial 
products, and those that did tended to operate with the second or third multiplicative concept.  
 

Introduction 

Although there is significant scholarship on multi-digit addition and subtraction, research on 

multi-digit multiplication has, historically, been limited in scope and magnitude (Fuson, 2003; 

Harrison, 2013; Hickendorff et al., 2019). Prior work has typically either focused on the use of 

symbolic strategies and associated reasoning (Hickendorff et al., 2019), or the relationship 

between students visual and symbolic approaches to multi-digit multiplication (Izsàk, 2005; 

Larsson et al., 2017). In particular, the role of partial products in multiplication is often noted, 

but analysis of how children reason about them is largely absent from the literature (Fuson, 2003; 

Iszák, 2005). This study emerged as a contribution to the existing gap to gain more insight into 

students’ multiplicative reasoning and conceptual knowledge, with the purpose being to examine 

how children’s multiplicative reasoning relates to how they solve multi-digit multiplication tasks.  

Theoretical Framework & Literature Review 

The current paper uses Scheme Theory to examine children’s multiplicative reasoning, with 

particular focus on the multiplicative concepts as described by Hackenberg (2010). Prior to 

multiplicative reasoning, students demonstrate pre-multiplicative reasoning by using a standard 

algorithm or counting by 1s to solve the multiplication task. For instance, a child may use a 

standard algorithm to solve 4x19. However, when “carrying the 3,” they may not be able to 

explain that it represents 30. If pressed to represent 4x30 or 4x3 visually, they will be unable to 

do so. At the first multiplicative concept (MC1), a child is anticipated to use any strategy like 

skip-counting, repeated addition, and doubling to solve the given task. with a limited ability to 

visualize part of the partial products. For example, a child may solve 4x19 successfully by 

doubling 19 (or 19+19) and then doubling 38 to get 76, but when “carrying the 3,” they may not 
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be able to explain that it represents 30. If pressed to represent 4x30 visually, they may do it with 

some difficulty (but will easily be able to do so for 4x3). 

At the second multiplicative concept (MC 2), a child is anticipated to solve and represent 

four partial products with an area model (arrays rods or base 10 blocks) but explain it 

conceptually. For example, a child may be able to solve 19x24 successfully with a standard 

algorithm but unable to represent all the partial products on a dot paper (i.e., visually shows 

10x20 and 9x4, but not the other two partial products). When a child can solve and represent all 

the partial products with an area model, dot paper, or other manipulative, such a child is 

considered to be at the third multiplicative concept; during this stage, the child is anticipated to 

solve and interpret four or more partial products/quotients. For instance, a child solves 19x24 

successfully with a standard algorithm and represents it visually on dot paper, area model, or 

base 10 blocks (i.e., visually shows 10x20, 10x4, 9x20, and 9x4). 

As noted earlier, examination of children’s reasoning with multi-digit multiplication has been 

limited in scope and magnitude (Fuson, 2003; Harrison, 2013; Hickendorff et al., 2019). A clear 

indication from much of the research on students’ symbolic approaches to multiplication 

suggests that good recall of multiplication facts and accuracy in answers is an indicator of 

success (Javornik & Lipovec, 2020; Lin & Kubina, 2005). However, many students are unable to 

meaningfully connect their symbolic algorithmic work with a drawn representation (Hurst & 

Hurrell, 2016; Larsson et al., 2017). Indeed, Larsson et al. (2017) found that, when pressed for 

explanation, such students relied on repeated addition instead of any multiplicative reasoning. 

Examining how children used bundles of sticks when modeling multi-digit multiplication, Hurst 

and Hurrell (2016) found that although all students “seemed to have a robust recall of 

multiplication facts…this facility to recall multiplication facts was not an indicator that the 

students had a conceptual understanding of multiplication” (p. 37).  

Key in understanding children’s skill and reasoning with multi-digit multiplication is their 

developed understanding of partial products (Hickendorff et al., 2019). Most scholars examining 

students’ conceptual understanding of partial products have advocated introducing it with arrays 

or some other form of area model to allow for visualizing the decomposition of numbers into 

their base-ten components (Izsàk, 2005; Young-Loveridge & Mills, 2009). In examining this 

scholarship, it appears that students may initially learn to solve problems with two partial 

products (i.e., 15×24 = 15×20 + 15×4) before learning to do so with four or more partial products 



 

Proceedings of the 52nd Annual Meeting of the Research Council on Mathematics Learning 2025    11 

(i.e., 15×24 = 10×20 + 10×4 + 5×20 + 5×4). Despite this assumption in the literature, there is 

little empirical study of how this aligns with different levels of multiplicative reasoning. Such is 

the central focus in the current paper: to examine the relationship between children’s 

multiplicative reasoning and their strategies in using partial products.  

Methods 

Sample & Procedure 

Participants included a convenience sample of 16 fifth-grade students. Participants completed 

the Multiplicative Reasoning Assessment (MRA). The MRA is a 21-item assessment of 

children’s multiplicative concepts. Validity evidence includes psychometric data for internal 

structure and test content, and cognitive interviews for response processes (Kosko, 2019). Raw 

dichotomous responses on the MRA were transformed via a Rasch model into a continuous 

scale. Four students, representing each of the multiplicative reasoning levels assessed by the 

MRA (pre-multiplicative, MC1, MC2, & MC3) were purposefully assigned within one of each of 

four conditions. Each condition provided a specific visual: base-ten blocks, array rods, or dot 

array paper as a visual for explaining their multiplication (see Figure 1). Visualizations were 

modeled with the task 2×12, which was considered accessible to students not yet able to skip-

count given the connection to doubling. Next, participants were asked to solve four 

multiplication tasks, with follow-up questions for assessing their reasoning, use of the visual, and 

any written algorithms used: 4×19, 15×24, 8×33, and 13×27. 

During each interview, participants wore a Pupil Core eye-tracking headset, which recorded 

their pupil-gaze and front view. Eye tracking is an exploratory method used to analyze students’ 

behavior through gaze patterns, which allows researchers to capture real-time data on how 

students engage with tasks. It can distinguish gaze patterns, pupil dilation, and fixations 

(Duchowski, 2007). In general, numerous but shorter duration fixations tend to indicate lower 

working memory load and higher ability whereas fewer but longer duration fixations indicate 

more demands on working memory (Rayner, 2006). However, where such fixations matters as 

much as their duration and number. In the present study, we examined pupil-gaze qualitative in 

concert with other video-based interview data. Given the exploratory nature of our analysis, this 

seemed appropriate.  

A data-transformation variant of convergent mixed methods design was used in the current 

study (Creswell & Plano Clark, 2018). We collected interview data of students with eye-tracking 
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glasses and examined their spoken explanations, hand gestures, eye-gaze, use of manipulatives, 

and written mathematics. This multi-modal data allowed for a richer analysis of the meaning 

conveyed by students’ actions. Following qualitative analysis, emergent themes were 

transformed into ordinal data and used in a correlational analysis with MRA scores.  
 

Figure 1  

Visualizations Used in Interviews 
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Analysis & Results 

Qualitative Analysis & Findings 

We engaged in three rounds of qualitative analysis across all three authors, focusing on how 

students conveyed multiplicative meaning. Students’ written work and eye-tracking videos were 

used to examine gestures, eye-gaze, use of manipulatives, verbal descriptions and written 

mathematics. After an initial round of individual open coding, authors met and examined 

emergent themes for overlap. A second round of analysis confirmed three emergent themes for 

analysis: students did not attend to partial products; students attended to no more than two partial 

products; students attended to more than two partial products. We used these themes to examine 

students’ work with particular tasks in the next round of analysis, as some students did not 

consistently convey their use of partial products. In the paragraphs below, we briefly summarize 

these themes with three cases with particular attention to students’ solving 15×24. 

Did Not Attend to Partial Products 

Half of participants were unable to attend to partial products. Many demonstrated either this 

by using additive reasoning or doubling approaches, but such evidence often did not become 

apparent until they were asked to explain or visually represent their reasoning. Among these 

individuals, Amanda was of particular interest because she could easily solve any problem, so 

long as it was represented symbolically. Amanda was able to quickly able to use the box method 
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to find a solution to 15×24 before adding each multiplicand. Yet, when asked to demonstrate her 

reasoning with arrays, Amanda began counting ten dots and five dots to draw two lines in the 

top-left corner of the array sheet. Following a brief exchange with the interviewer, she redrew it 

as 10 and 20, before mimicking the arrangement for each box in her box model. While checking 

to see if her visuals matched her numbers in the written algorithm, Amanda would put one finger 

from each hand to point to each number on the exterior (either of the array or the box), as her 

eye-gaze glanced down to the box model for reference (see Figure 2). In each instance, it appears 

that Amanda focused on the multiplicands but never the relationship between them to produce 

the product. Later in the interview, when tasked with solving 13×27, Amanda did something 

similar. However, the interviewer pressed her to explain what 3 times 20 meant with the array, 

asking “how do you know there are 60 dots?” Like prior tasks, Amanda’s eye-gaze focused on 

the multiplicands but never the interior of the rectangular array that could be inferred from her 

work. She then stated that “3 plus 20 is 23, but if I did it by times, I know that 3 times 2 is 6. 

Then it’s 60 because you add a zero.” When asked how she knew there were 21 dots for 3×7, 

Amanda said “I just know my numbers…my third-grade teacher had these songs that would help 

us remember…” This interaction confirmed that despite fluency with rotely memorized 

multiplication facts, Amanda did not understand how to represent or explain multiplication with 

either single or multi-digit whole numbers.  

Figure 2 

Amanda’s Written Work and Eye-tracking for 15×24 

 
 

 

Attend to No More than Two Partial Products  

A quarter of participants demonstrated an ability to explain or visually represent their 

reasoning with no more than two partial products. For example, Kelsey was able to easily model 

problems like 4×19 and 8×33 with the provided array rods and then explain how the visual 

represented the problem. When asked to do so with 15×24, Kelsey carefully placed a 10 and 5 
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rod for 15 at the top, and two 10s and a 4 rod on the left for 24. She then verbally talked through 

multiplying 10 times 20, looked for and found two 100s before stating “okay and then 5 times 4 

is 20” (see Figure 3). After confirming she had finished and was satisfied with her response, the 

interviewer asked, “have you done this in a different way – a written way?” Kelsey said she had 

used a box to do so and then was provided with a pencil to show her written approach (see 

Figure 3). After finishing the written algorithm, Kelsey proceeded to immediately add a 100 

block and a 40 block to her visual, but the arrangement did not create a rectangle that coincided 

with her model. This contrasted her approach when working with tasks requiring only two partial 

products. Other interview participants demonstrating this theme similarly skipped partial 

products to multiply, or did not separate a multiplier into factors at all (i.e., 10×24 + 5×24). Thus, 

regardless of visual used, Kelsey’s approach is representative of actions demonstrated with this 

theme.  

Figure 3  

Kelsey (left) and Justin’s (right) Visualizations and Approach to Solving 15×24 

 
 

 
 

Attend to More Than Two Partial Products  

A quarter of our participants demonstrated the ability to engage with more than two partial 

products, indicating a higher level of multiplicative reasoning. Justin was able to visually 

represent his reasoning on simpler tasks (i.e., 4×19 & 8×33). When prompted to solve 15×24, 

Justin initially placed two 10s and a 4 on the top and a ten and five on the left but later adjusted 

so that it would fit on the sheet of paper (see Figure 3). Next, Justin laid out two 100 blocks and 

began to use 10s to fill in the remaining space. Throughout, Justin’s eye-gaze scanned back-and-

forth between the perimeter and area of the array, suggesting a possible coordination between the 

rods representing area and those representing its dimensions. Halfway through his construction 

of the area, Justin paused and tapped his pencil while his eye-gaze indicated looking off in the 

distance. Justin removed five 10s he had placed at the top and replaced them with a 100 (See 



 

Proceedings of the 52nd Annual Meeting of the Research Council on Mathematics Learning 2025    15 

Figure 3). We infer from this that Justin anticipated iterating the other five 10s (i.e., 50) and 

unitized the ten 10s as a 100. Despite this not canonically representing an area model (i.e., the 

100 does not line up perfectly with its multiplicands), this was considered as an act of 

anticipating three levels of units (skip counting the 10s, grouping five 10s as 50, and 

regrouping/anticipating that two sets of five 10s is one 100s). When prompted to explain his 

model, Justin wrote “10×20 is 200; 5×4 is 20; 5×20 is 100; 10×4 is 40” and was able to 

coordinate his written mathematics with the visual representation. 

Quantitative Analysis & Results 

Following quantitative analysis, the three themes that emerged were quantititized into an 

ordinal variable (0 = students did not attend to partial products; 1= students attended to no more 

than two partial products; 2 =students attended to more than two partial products.). Recall that 

some participants displayed different levels of partial product use in different tasks, so we 

created composite scores (averages) for these individuals. Quantitization allowed us to examine 

the correlation between students’ MRA scores and their use of partial products, as observed in 

the interviews. We used the Spearman rank coefficient given our sample size (n = 16). 

Additionally, the Spearman rho coefficient is ideal for examining ordinal and continuous data 

(Siegel & Castellan, 1988). Results indicate a statistically significant and strong correlation (ρ = 

.82, p < .001). Next, we visually examined a scatterplot of the correlated data and observed that 

students demonstrating MC2 or MC3, as assessed with the MRA, appeared to be those who were 

consistently attending to partial products during interviews.  

Discussion 

The purpose of this exploratory study was to examine how children’s multiplicative 

reasoning is related to solving multi-digit multiplication tasks. Results and findings indicated that 

children operating at the first multiplicative concept or with pre-multiplicative reasoning could 

not meaningfully use, visually represent, or explain partial products. A primary implication is 

that students need to be able to anticipate two levels of units or more (MC2 & MC3) to 

meaningfully understand partial products. These findings highlight a need for instructional 

approaches to foster students’ ability to anticipate and visualize partial products. For example, 

encouraging both visual and concrete representations is essential for students to gain a 

conceptual understanding of partial products. Additionally, teachers can provide scaffolding to 

support students’ transitioning from working with two partial products to four partial products. 
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This study also contributes to understanding how eye tracking technology can provide insights 

into children's cognitive processes engaged with mathematical tasks. Further study is needed, but 

this study fills a gap identified by many who have examined multi-digit multiplication (Izsàk, 

2005; Hickendorff et al., 2019).  
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This paper examines the relationship between elementary students’ multiplicative double 
counting (mDC) stage and each concept of fluency. Students’ stage of mDC was identified as 
either pre-multiplicative, participatory, or anticipatory. In addition, a multiplication fluency 
assessment that measured accuracy, efficiency, and flexibility was given. Results indicated pre-
multiplicative students’ overall score on each concept of fluency were lower than the other 
stages and anticipatory students demonstrated the highest levels of efficiency and flexibility. 
However, their scores on these two concepts were lower than anticipated, so future research 
should focus on ways to increase efficiency and flexibility for this population of students. 
 

Fluency is defined by the National Council for Teachers of Mathematics (NCTM) (2014) as 

the ability to use procedures accurately, efficiently, and flexibly and to apply the procedures to 

new problems and contexts. Kling and Bay-Williams (2015) apply this definition of fluency to 

multiplication facts and state that developing fluency with multiplication facts is one of the most 

important objectives of teachers in grades three through five. However, they recognize that 

mastery of these facts continues to be a major stumbling block for many elementary students. 

Fluency with multiplication facts impacts students’ comprehension of multiple mathematics 

concepts including fractions. Therefore, one goal of teaching multiplication to students should be 

for them to become fluent, and in order for students to obtain fluency, as defined by the NCTM, 

all three concepts of fluency (i.e., accuracy, efficiency, and flexibility) must be developed.  

Another area where students continue to struggle in elementary grades is with their ability to 

reason multiplicatively. Tzur et al. (2013) propose a developmental framework for multiplicative 

schemes that students construct as they develop multiplicative reasoning. The first scheme of the 

developmental framework is multiplicative double counting (mDC) which “involves recognizing 

a given number of composite units, each consisting of the same number of 1s” (p. 90). They 

explain schemes as “conceptual structures and operations children construct and use for 

reasoning in multiplicative situations” (p. 85). Once students have established an mDC, they can 

use strategies for unknown multiplication facts. For example, a student who has constructed an 

mDC may solve 8×6 by using the known fact of 8×5=40 and adding one more group of 8 to get 
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48. In the same way a student who is fluent, as defined by NCTM (2014), would also be able to 

solve this problem in a similar way by demonstrating accuracy, efficiency, and flexibility. 

Literature Review 

Bay-Williams and SanGiovanni (2021) state that when students can complete problems 

correctly, they are often deemed fluent. They argue, however, that a fluent student would not just 

answer correctly, but can explain how they reasoned and what strategies they could use to solve 

the problem. They propose that fluency is much more involved than just being able to answer a 

math problem accurately and should include efficiency and flexibility. 

Of the three areas of fluency, accuracy is the most easily defined because it is 

straightforward. Accuracy is “correctly solving a procedure” (Bay-Williams & SanGiovanni, 

2021, p. 3). If a student gets an answer correct, then they will be considered accurate. Because it 

is the most straightforward, it is also the easiest to assess and therefore, prior research has 

focused more on accuracy than efficiency and flexibility. Bay-Williams and SanGiovanni (2021) 

define efficiency as a student’s ability to select a strategy that is appropriate for the problem. 

These students know which strategy to use and implement quickly. To be considered efficient, 

students must work through the problem without getting stuck. The final concept of fluency is 

flexibility, and it is the most challenging to define and therefore, assess. According to Bay-

Williams and SanGiovanni (2021), a student who demonstrates flexibility knows several 

strategies for solving a problem and can apply these strategies to new problem types. They are 

able to switch approaches when needed and can generalize strategies for various situations. Prior 

research on fluency has only focused on speed and accuracy. This study seeks to view fluency 

through the theoretical lens of mDC to better understand the struggles that students are facing as 

they learn their multiplication facts. 

Theoretical Framework 

There are three stages of mDC. The first of these stages is the pre-multiplicative stage. 

Children who are at this stage typically use additive reasoning when solving multiplicative 

situations and count using something concrete to keep track of additional counts (Tzur et al., 

2021). Students are considered to be at the pre-multiplicative stage when they cannot figure out 

the answer to a multiplicative situation in any way other than using a counting by ones strategy. 

Students that use counting by ones strategy often find the correct answer to a multiplication 

problem, however, they are inefficient and do not demonstrate flexibility. The next stage of mDC 
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is the participatory stage. Students at the participatory stage are in the process of transitioning 

from additive to multiplicative reasoning (Steffe, 2010). Because of this they tend to revert to 

additive reasoning when solving multiplication tasks. Ulrich (2015) states that students reasoning 

at this stage experience significant constraints in dealing with the added complexity of 

coordinating two-levels of units and this causes them to revert back to additive reasoning by 

using strategies such as skip counting or repeated addition. Although students often get an 

accurate answer when using strategies such as skip counting and repeated addition, these 

strategies are not always the most efficient or flexible. The most sophisticated stage of mDC is 

that of the anticipatory mDC. Students at this stage see tasks as multiplicative and not additive 

and can reason strategically about multiplication (Tzur et al., 2021). This allows them to use 

efficient and flexible strategies such as decomposition and compensation when solving 

multiplication problems. Therefore, this study seeks to answer the question: How does a 

student’s mDC stage relate to their accuracy, efficiency, and flexibility with multiplication facts? 

Methods 

Participants and Sampling Strategy 

Approval of this study was given by the IRB at Oklahoma State University (IRB-23-561). 

Participants for this study were selected from a rural midwestern elementary school. All students 

in fourth and fifth grade were eligible to participate (n=65). Of the students who took the 

assessments there were 28 fourth graders and 31 fifth graders that took both assessments and had 

permission and gave assent to have their assessments scored for use in the study. The final 

sample size was 59 students. Each student that participated was told to answer each question as 

best they could and to not erase any of their work or skip any questions. They wrote “I don’t 

know” if they could not solve a problem. The assessments were not timed. 

Quantitative Instruments 

Students were asked to complete two quantitative assessments as part of the data collection. 

One assessment measured their mDC stage and one measured their multiplication fluency level. 

The mDC assessment measured students’ mDC stage as either pre-multiplicative, participatory, 

or anticipatory. This assessment was previously validated (Tzur et al., 2022) and was scored 

based on correct and incorrect answers. Raw data was entered into spreadsheets that was 

provided through personal communication (R. Tzur, personal communication, February 10, 
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2023). After entering the scores, each student was assigned an mDC stage (0- pre-multiplicative, 

1- participatory, and 2- anticipatory).  

An additional instrument was used to assess students’ multiplication fluency level. Because 

an instrument was not available that measured all three concepts of fluency, a written fluency 

assessment was created specifically for this study and content validation was obtained before its 

use. A pilot study was conducted and included a sample of convenience consisting of six 

participants from third and fourth grade (3rd grade, 𝑛 = 2; 4th grade, 𝑛=4). This iteration of the 

multiplication assessment included six multiplication problems. The problems included 

foundational facts (i.e., 6 × 2) as well as math facts that would elicit student strategy use such as 4 

× 9.  Students could calculate 4 × 9 either through doubling 2 × 9 or through compensation using 

(5 × 9)−9. The assessment also included one 2-digit by 1-digit multiplication problem (22 × 5) to 

evaluate whether students would use the standard algorithm or partial products to find the 

product. Students were asked how they solved the problem, how they could explain to a friend 

how to solve the problem, and what strategies they used or could use to solve the problem.  

These questions were used so that students’ use of strategy could be seen and also to see whether 

they could solve the problems using more than one strategy.  

While scoring the first iteration of the assessment, it was determined that there were no 

questions that allowed researchers to assess flexibility with multiplication. Because of this, five 

questions that included worked examples were added. The worked examples demonstrated 

compensation, doubling, near squares and partial products. Another edit made included a part A 

and part B for each of the first five problems with each part being on a separate page. In part A 

students solved the given multiplication problem and explained how they solved it. Part B 

showed students one possible strategy they could use and asked the question, “Is this the BEST 

way to solve the problem? Why or why not?” followed by “Is there another way to solve the 

problem?” Parts A and B were on separate pages to ensure that students did not go back to the 

previous section and solve the problem in the way that was shown to them. Two experts in the 

field of multiplicative reasoning and fluency, Karl Kosko1 and John SanGiovanni2 provided 

feedback on this second iteration of the multiplication fluency assessment. Kosko suggested 

including an application of the associative property as one option for a question. Taking this 

feedback into consideration, the worked example of 8 × 7 was replaced with a worked example of 

4 × 7 to elicit students’ use of the associative property by looking for them to reconsider solving 4 
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× 7 by calculating 2 × 14 (i.e., halving and doubling). He indicated that he believed the items on 

the assessment would yield interesting data about students’ fluency and understanding of 

multiplication (K. Kosko, personal communication, January 25, 2024). SanGiovanni indicated 

that the assessment would measure student’s multiplication fluency. His only critique was that 

beginning with a problem such as 6 × 2 might “muddy the water” for students when asking if 

they know an alternative strategy for solving the problem since it is a foundational fact that most 

fourth and fifth graders have memorized (J. SanGiovanni, personal communication, January 16, 

2024). Taking this feedback into consideration, 6 × 2 was made a sample problem on the 

assessment and it was only scored for accuracy and efficiency but not flexibility.  

The final version of the assessment included 10 multiplication problems that allowed 

students to show their understanding of multiplication and explain how they solved 

multiplication fact problems using various strategies. Each question on the fluency assessment 

was scored individually with a score of zero or one on each concept of fluency. Students were 

given an accuracy score of one if they had the correct answer to the multiplication problem 

regardless of how they obtained their answer. Because of the way the fluency assessment was 

created, there were 13 opportunities for students to demonstrate accuracy. There were three 

questions that listed two multiplication problems. These questions asked which multiplication 

fact problem could best be solved using the method shown in the worked example (Figure 1).  

Figure 1 

Fluency Assessment Problem 5 

 
 

It was not necessary that students solve both problems, however, some did. To account for 

this, attempts on each problem were tabulated to determine how many problems out of 13 each 

student attempted. Students were not penalized for problems where there was no attempt. The 

total correct was divided by the total attempted in order to give students an overall percentage for 

accuracy. Scoring efficiency and flexibility was more straightforward as there were 10 
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opportunities and students were given a score of zero or one on each of the 10. A score of one 

indicated that they demonstrated fluency skill and a score of zero indicated they did not 

demonstrate fluency skill. To evaluate efficiency, the rubric helped determine whether the 

student chose a strategy suitable for the given problem. A scoring rubric was created based upon 

anticipated student answers. An example of the scoring rubric is shown in Table 1. The results of 

the fluency assessment were broken down into categories for overall accuracy, efficiency, and 

flexibility percentages in order to see which concept was most associated with mDC stage. 

Table 1 

Example of Scoring Rubric 
Scoring Rubric for Multiplication Fact Fluency Assessment – Problem 4 x 9 or 7 x 9 

Note for Accuracy: Accuracy is scored for each problem on these items. If both problems are attempted, a score of 
1 will be given on attempted and if they are both correct a score of 1 will be given for both problems. If only one is 
attempted, then a score of 1 is only given for the problem attempted and a score of 0 will be given for the problem 
that was not attempted.   
Efficiency Flexibility 
1 0 1 0 
-Yes to both, uses any strategy 
correctly. 
-Yes to 4 x 9 (correctly) and 
No to 7 x 9 (no attempt) 
-Yes to 7 x 9 (correctly) and 
no to 4 x 9 (no attempt) 

-No for 4 x 9 and 7 x 9 
-Yes for both but can’t 
use correctly 

-Yes to both, uses given 
strategy correctly 
-Yes to 4x9 (uses strategy 
given) and No to 7x9 (no 
attempt) 

-No for 4x9 
-Yes for both but can’t 
use given strategy 
correctly 

 

Results 

The results of the mDC assessment and accuracy, efficiency and flexibility scores are shown 

in Table 2. From the table it is evident that pre-multiplicative mDC students and participatory 

mDC students’ scores on efficiency and flexibility are lower than those of the anticipatory mDC 

students. While the anticipatory mDC students scored higher in every concept, their scores on 

efficiency and flexibility were higher. Kendall’s Tau b was calculated in order to determine 

which concepts of fluency were most associated with mDC stage. The results of the statistical 

analysis indicated a significant relationship between mDC stage and each concept of fluency. 

The results for significance between accuracy and mDC stage indicate a weak association 

(𝜏𝑏=.286, 𝑝=.026). Efficiency (𝜏𝑏=.373, 𝑝<.001), and flexibility (𝜏𝑏=.336, 𝑝<.001) were moderately 

associated with mDC. Robust confidence intervals also indicate a significant relationship 

between each concept and mDC stage. 

Table 2 
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Overall Accuracy, Efficiency, and Flexibility Percentages 

 Overall Accuracy Percentage  
mDC Stage 0-20% 21-40% 41-60% 61-80% 81-100% Total 

Pre-multiplicative 0% 7.1% (1) 21.4% (3) 28.6% (4) 43% (6) 100% (14) 
Participatory 0% 0% 0% 28.6% (4) 71.4% (10) 100% (14) 
Anticipatory 0% 0% 9.7% (3) 6.5% (2) 84% (26) 100% (31) 
       

 Overall Efficiency Percentage  
mDC Stage 0-20% 21-40% 41-60% 61-80% 81-100% Total 

Pre-multiplicative 50% (7) 21.4% (3) 28.6% (4) 0% 0% 100% (14) 
Participatory 28.6% (4) 21.4% (3) 28.6% (4) 14.3% (2) 7.1% (1) 100% (14) 
Anticipatory 9.7% (3) 22.6% (7) 42% (8) 29% (9) 12.9% (4) 100% (31) 
       

 Overall Flexibility Percentage  
mDC Stage 0-20% 21-40% 41-60% 61-80% 81-100% Total 

Pre-multiplicative 71.4% (10) 28.6% (4) 0% 0% 0% 100% (14) 
Participatory 64.3% (9) 21.4% (3) 14.3% (2) 0% 0% 100% (14) 
Anticipatory 35.5% (11) 16.1% (5) 25.8% (8) 22.6% (7) 0% 100% (31) 
       

Note. Number of students in parentheses. 

Discussion 

These findings demonstrate that efficiency and flexibility are more strongly associated with a 

student’s mDC stage than accuracy. Although accuracy did increase as mDC stage increased, the 

increase in efficiency and flexibility is more evident. These results demonstrate that at least 81% 

accuracy is associated with students at any stage of mDC, however, an overall percentage of 

60% or higher on efficiency and flexibility was only associated with students at a more 

sophisticated stage of mDC. Anticipatory mDC students demonstrated the highest overall 

percentages for each concept of fluency. These students are able to reason multiplicatively and 

operate on composite units allowing them to use strategies that are both efficient and flexible. 

This is a novel contribution of this study and adds to the literature on multiplicative reasoning 

and fluency level as this relationship has not appeared in prior research. This is an important 

contribution because if fourth and fifth graders are unable to reason multiplicatively, their ability 

to demonstrate fluency could be greatly impacted. This not only contributes to their ability to be 

fluent with their multiplication facts, but students who are not fluent with the multiplication facts 

also struggle with fractional concepts which are prevalent across fourth and fifth grades. 

Conclusion 
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Although the results of this research show that mDC stage is related to each concept of 

fluency with this association being stronger between mDC stage and efficiency and flexibility, 

there is still work to be done. According to these results, anticipatory mDC students did not score 

above 80% overall on flexibility and only 12.9% scored between 81-100% overall on efficiency. 

These students are ready to receive instruction that allows them to demonstrate efficiency and 

flexibility, however, many of them are not demonstrating their ability to reason in this way. 

Future research should focus on what can be done to increase these two concepts in students that 

are at the participatory mDC stage or higher. 
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Math apps are increasingly prevalent in classrooms, yet their impact on students’ math identity 
and motivation is not well understood. This case study examined Sarah, a third grader, and how 
her interactions with math apps influenced her math identity and motivation. Findings revealed 
that Sarah’s enjoyment of math apps was contingent on the alignment between her perception of 
math and the apps’ emphasis on computational approaches. This study contributes to ongoing 
discussions about the intersection of technology and student disposition and underscores the 
importance of considering individual student experiences in technology integration.  

 
“Being on laptops is not good for us.” This quote was from a recent interview with a third 

grader, Sarah, who shared her thoughts on using math apps. Over the last few decades, math 

applications (e.g., IXL, Prodigy, ST Math, Zearn, etc.) have become increasingly prevalent in K-

12 schools worldwide and have been acknowledged as an influential part of learning 

mathematics (Griffith et al., 2020; Laato et al., 2020). Recent research on math apps has largely 

focused on the design and content of apps (Laato et al., 2020) or research on academic outcomes 

and achievement-related metrics (Griffith et al., 2020).  

Since elementary students are a common target group for mathematics apps (Laato et al., 

2020), there is a high need to study this population of students. Existing literature indicates that 

identity is an important aspect of students’ learning experiences as it impacts their success and 

well-being in the classroom (Bohrnstedt et al., 2021). Similarly, motivation is a well-established 

area of research in mathematics education, and motivation has been recognized as an important 

mediator of mathematics learning and achievement (Schukajlow et al., 2023). This presentation 

examines the case of Sarah, a third-grader, and explores the following questions: What is the 

relationship between math apps and Sarah’s math identity and motivation? How did Sarah’s 

math identity and motivation change over time spent using math apps? 

Methods 

The case of Sarah is part of a larger exploratory multiple-case study (Yin, 2016) that 

examined third graders’ math identity and motivation related to their weekly use of math apps. 

This multiple-case study involved eight cases, each carefully selected from a classroom 

participant pool to represent a variety of mathematical identities and motivational profiles. For 
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this preliminary analysis, the focus was placed on Sarah’s case, as it offered particularly 

insightful reflections and was especially revealing (Yin, 2016). Previous work has focused on 

students’ math identity and motivation in separation, looking at how each construct 

independently relates to math app use (Swartz, 2024a, 2024b), but this paper examines Sarah 

holistically, analyzing her math identity and motivation in conjunction. 

To operationalize math identity, I draw on the mathematics identity framework proposed by 

Cribbs et al. (2015), which views math identity as comprising of three constructs: Perception of 

Math (originally Interest but renamed to avoid confusion with the motivation construct Interest), 

Introspection (originally Competence/Performance but renamed to simplify things), and 

Recognition. Perception of Math denotes a student’s view of math, Introspection describes a 

student’s view of themselves related to math, and Recognition denotes a student’s perception of 

how others recognize them as a math student. To operationalize motivation, I utilize self-

determination theory (SDT), which asserts that individuals share three fundamental 

psychological needs: autonomy, competence, and social relatedness (Ryan & Deci, 2000). 

Autonomy involves having control over one’s learning, competence refers to feeling capable of 

achieving desired outcomes, and social relatedness means feeling connected to others. My 

application of SDT leverages the unique opportunities math apps provide to foster these needs. I 

also consider the interest task value from expectancy-value theory (Eccles et al., 1983) since my 

research shows that students enjoy math games and apps (Shin et al., 2012).  

Figure 1 

Coding Process 

 
 

Data gathered for Sarah’s case includes two interviews, weekly surveys, observations, and 

math app data. I applied a priori coding (Miles et al., 2014) using categories like Perception of 

Math, Introspection, and Recognition for math identity, and Autonomy, Competence, 

Relatedness, and Interest for motivation. Using thematic analysis (Braun & Clarke, 2012), I 

created subcodes to explain each case’s math identity and motivation. After developing a 

subcodebook (examples in Tables 1 & 2), I assessed coding reliability by calculating the 

agreement between myself and two independent experts, in math identity and motivation. A 
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subset of 30% of the dataset was randomly chosen; following detailed discussions on the sub 

codebook and training on 15% of the data, both secondary coders and I independently coded 

15% of the data, achieving interrater agreements of 99% for both codebooks.  

Findings 

“Sarah is an old soul. She is one of the sweetest kids and is a hard worker. She is extremely 

bright.” – Ms. Care, Sarah’s Teacher. Sarah was an introverted third grader who preferred 

quietly reading a book in the corner over group work, that is, if she was not paired up with 

Madison or Chloe, her two best friends. Sarah could be especially withdrawn and inward-

focused since her peers were often boisterous during moments of free time and group work. 

While Sarah was often quick to retreat to a reserved, independent activity, she was also not afraid 

to voice her opinion when she felt confident or was encouraged by her friends. She had recently 

transferred to Cedar Hill Elementary School, where over 60% of the school’s students scored at 

or above the proficient level on the state math test, nearly double the state average. Sarah 

described herself as female and Caucasian, and institutionally, her school labeled her as being 

gifted and talented. To examine the relationship between Sarah’s math identity and motivation 

and her use of math apps and understand how her math identity and motivation changed over the 

duration of the study, I focus on the components of Sarah’s math identity and motivation that 

experienced major shifts. In the following analysis, I separated two types of math Sarah engaged 

in: regular math (math free from technology) and math app math (the math in math apps).  

Changes in Identity 

While some aspects of Sarah’s math identity changed minimally or not all, other components 

changed in more obvious ways (highlighted in grey). Table 1 summarizes the components of 

Sarah’s math identity based on her interviews in January and May of 2024. Examining Sarah’s 

math identity at the beginning and end of the semester, we see no changes in how she perceived 

others to view her math ability (Recognition) and how she viewed her own math ability 

(Introspection). However, we do see changes in Sarah’s view of regular math and math apps 

(Perception of Math—see text highlighted in gray). Since only an observed change in the 

component of Sarah’s math identity related to her view of math (Perception of Math) was 

observed, I now further explore the changes seen in the component across the semester. 

Perception of Math 
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In January, Sarah viewed math as doing facts and getting to the answer. In displaying a more 

computational view of math, Sarah felt that part of what it means to do math is to get the answer 

quickly. Responding to the Screening Tool question, “What does it mean to be good at math?” 

Sarah said, “To not only get the answers right, but to also answer them quickly.” There was an 

element of speed engrained in how she viewed doing math. In the first interview, she reiterated 

this feeling when she stated, “That’s part of the point of math, to  

just get them [facts] right.” This belief was likely influenced by her view that math app math was 

fast, often rushing her to complete problems and facts before she could fully think through the 

problem. Sarah said, “Reflex, you have to get it really fast, and you have to get it right.” Some 

math apps emphasized solving problems quickly, which seemed to translate to her viewing 

regular math as solution-oriented, where the goal of math is to find answer and solve the fact. 

Table 1 

Overview of Changes in Sarah’s Math Identity 

Regular Math Identity 
Components & Most 
Prevalent Themes (in 
descending order of 

prevalence) 

 Interview 1 Interview 2 

Perception of Math 

(1) Math is exciting/fun. (1) Math is exciting/fun. 
(2) Math is doing facts/getting the 
answer. 

(2) Math is solving and making 
sense of problems. 

 (3) Math is doing/knowing facts. 
Introspection (1) Good at math. (1) Good at math. 
Recognition (1) Good at math. (1) Good at math. 

Math App Math Identity 
Components & Most 
Prevalent Themes (in 
descending order of 

prevalence) 

Perception of Math 
App Math 

(1) Math app math is exciting/fun. (1) Math app math is not 
exciting/fun. 

(2) Math app math is a game/not 
real math. (2) Math app math is fast. 

Introspection (1) Good at math (1) Good at math 
Recognition (1) Good at math. (1) Good at math. 

      
By the end of the semester in May, Sarah displayed a more problem-solving view of math 

and felt that part of what it meant to do math is to understand the solution you’ve found. In 

responding to the Screening Tool question, “What does it mean to be good at math?” Sarah said, 

“To get the answers right and understand them.” When asked to define what math was in the 

second interview, Sarah replied, “It’s a way of understanding numbers and solving problems to 

help you understand, like how many stars are on the American flag or something.” In May, 

Sarah’s view of math emphasized understanding and problem-solving, marking a stark shift from 

her view of math in January as computational and driven by answering facts quickly.  

The second major shift in Sarah’s perception of math came in her view of math app math. In 

January, Sarah primarily viewed math app math as exciting/fun and a gamified experience that 
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she did not consider to be “real math.” By May, Sarah found math app math unexciting and felt it 

focused on solving facts quickly. Perhaps Sarah no longer had fun doing math app math because 

of the shift in her perception of what math is. When her perception of math and the math 

emphasized in math apps were congruent (i.e., getting facts right), Sarah experienced enjoyment 

when doing math app math. However, when her perception of math shifted away from a 

perspective that stressed a computational and rote view toward a view foregrounding 

understanding and making sense of solutions, Sarah no longer experienced enjoyment as the 

dominant feeling when engaging in math app math. In fact, it was quite the opposite, with 

feelings of “frustration” and being “grumpy” due to the focus on efficiency through the app’s 

timer feature and a focus on correctness through the app’s rating feature, which tracked students’ 

fact fluency percentage and as Sarah described, “It just tells you how good you are.” 

Changes in Motivation 

Examining changes in Sarah’s motivation (see Table 2), the most evident changes in her 

motivation are seen in a value increase in relatedness from low to high and a complete reversal 

of the enjoyment comparison between regular math and math app math. More minimal changes 

were observed with an increase in the value of autonomy, a decrease in the value of competence, 

and changes in the experience of both autonomy and relatedness. 

Relatedness  

Relatedness was a motivation component that Sarah valued more at the end of the semester 

than at the beginning. At the beginning, Sarah felt it was “not really” that important to feel close 

and connected with her peers when doing math. By the end of the semester, Sarah valued feeling 

connected to classmates and seemed to differentiate opportunities for connection in regular math 

and math app math based on the quality of interaction. While math apps like Prodigy and Boddle 

allowed students to experience relatedness by battling other students online, the quality of 

interaction via math apps had a low value for Sarah, and she expressed a high value and 

enjoyment in interacting face-to-face with her peers. At the end of the semester, Sarah ranked 

group work without technology as her favorite way to do math. 

Interest 

Perhaps the most evident shift in Sarah’s motivation came when she reversed the order of 

which type of math she enjoyed (Interest) more (Table 2). While the interest Sarah felt when 

doing regular math was consistently high throughout the semester, Sarah started the semester 
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holding the view that math app math was more enjoyable than regular math. For Sarah, many 

things about math apps were enjoyable: the ability to customize characters’ outfits, the ability to 

buy items for the virtual room her game character resided in, and the animations and sounds the 

game made as she solved problems. At one point during the first interview, she pulled off her 

headphones while playing Reflex and said, “This sounds really funny.” Sarah acknowledged that 

while the enjoyment she experienced with math apps was greater than that of regular math, this 

enjoyment was problematic because there wasn’t enough “work,” which I interpret as Sarah 

problematizing the gamified nature of some of the apps. 

Table 2 

Overview of Changes in Sarah’s Motivation 

Value on Motivation 
Component 

 Interview 1 Interview 2 

Autonomy Moderate Moderate 
Competence High Moderate 

Relatedness Low High 

Experience (Regular 
Math vs Math app 

Math) 

Autonomy Math apps and regular math offer similar 
autonomy. 

Regular math offers greater 
autonomy. 

Competence Regular math and math apps offer similar 
competence. 

Regular math and math apps offer 
similar competence. 

Relatedness Regular math and math apps offer similar 
relatedness. 

Regular math offers greater 
relatedness. 

Interest Math apps are more fun. Regular math is more fun. 

 

At the end of the semester of regularly utilizing her laptop to engage in math apps, Sarah 

said, “I love all no computer [days]” since she felt that math apps are “not that much fun.” Sarah 

explained that she felt a major reason was that her classmates often had behavior issues when on 

their computers playing math apps. Describing several reasons she no longer liked math apps, 

she said, “I mean, sometimes it’s just not that much fun. It makes people scream a lot because 

you can interact so much, and it’s a lot more games than math. And some of the math is really, 

really easy.” Another aspect of math apps that Sarah became turned off by was the timing 

mechanism on many learning apps. For example, Reflex had a timer counting down as students 

attempted math facts, or students would be challenged to complete as many facts in a set time as 

possible. Describing how she felt when solving problems as these timers counted down, she said, 

“stressed and frustrated.” She experienced an apparent decline in enjoyment related to math apps 

over the duration of the study. 

Discussion 
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Sarah’s evolving math identity and motivation offers a microcosm of how math apps relate to 

students’ math identity and motivation. For instance, Sarah’s enjoyment (Interest) of math apps 

appeared tied to her evolving Perception of Math. When her Perception of Math aligned with the 

computational emphasis in these apps, she experienced more enjoyment when engaging with 

math apps. However, as her Perception of Math shifted toward a focus on understanding and 

problem-solving, her enjoyment of math apps diminished. This highlights a significant issue with 

many current math apps: their heavy reliance on gamified features and time-based mechanics 

often fails to accommodate deeper mathematical thinking and problem-solving. 

Sarah’s case also offers valuable insights for educators integrating technology into 

mathematics instruction. One notable finding is the decline in Sarah’s enjoyment of math apps 

and her increased preference for regular math, particularly group work. This shift underscores 

the importance of social interaction in fostering motivation and engagement. While apps like 

Prodigy and Boddle allow for virtual interaction, Sarah’s comments suggest that face-to-face 

collaboration offers a deeper sense of relatedness. Educators should be mindful of this when 

incorporating math apps into their classrooms and consider pairing app-based activities with 

opportunities for peer interaction and collaborative problem-solving. 

Sarah’s experiences point to areas where math apps could be improved to better support 

students’ math identity and motivation. Learning app developers should critically evaluate the 

role of gamification. While features like customizable avatars and rewards can make apps 

appealing, they should not overshadow the mathematical content. Games that integrate 

meaningful mathematical challenges with engaging narratives, rather than superficial gamified 

elements, may do better at sustaining long-term interest while supporting a positive math 

identity. This study focuses on Sarah’s case, which raises questions about the broader impact of 

math apps on elementary students’ math identity and motivation. Future research should 

determine if the patterns seen in Sarah’s case are consistent in a larger, more diverse student 

sample. Cross-case analyses could reveal whether the features Sarah had a disdain for—like 

speed emphasis and lack of meaningful interaction—are systemic issues in math app design. This 

study connects her case to broader trends, contributing to discussions about technology’s role in 

math education. It highlights the need for intentional math app design that engages students and 

aligns with their evolving identities and motivational needs. Such efforts are vital to ensure 

technology fosters meaningful learning instead of hindering deeper mathematical understanding. 
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This paper shares shortened versions of three of the Indiana Mathematics Beliefs Scales. 
Exploratory Factor Analysis (EFA) with principal axis factoring extraction method (common 
factor extraction) and a promax (oblique) rotation were used to analyze data from a sample of 
227 middle school students. The results showed that the scales could be shortened from a total of 
18 items to 11 items while retaining adequate internal consistency.  
 

 Background 

Beliefs may be broadly defined as assumptions or propositions held by individuals that 

they consider to be true and that may implicitly or explicitly influence actions (Sun & Zhang, 

2024; Voss et al., 2013). Research studies that have explored mathematical beliefs often fall 

into one of five categories of focus: understanding beliefs about the nature and structure of 

mathematics, understanding how beliefs evolve or change over time, exploring how different 

beliefs impact behavior and achievement, understanding differences in beliefs across various 

domains, and testing interventions aimed at changing the beliefs that students have about 

themselves and the subject (Iannone & Simpson, 2019; Muis, 2004). 

Within this research base, numerous studies have found that beliefs may impact students’ 

motivation, comprehension of mathematical texts, and achievement (Iannone & Simpson, 

2019; Mcleod, 1992; Schommer et al., 1992; Schunk, 1991). In addition, research has 

specifically explored the role of beliefs when solving cognitively demanding tasks and 

problems. For example, Chapman (2015) summarized research across seminal studies on 

problem solving (PS) - defined herein as the pursuit of a mathematical goal when the solution 

is not immediately clear (Lester, 2013)—to suggest that beliefs and dispositions played an 

important role in PS success. This claim was later supported by Rhodes et al. (2023) who 

conducted a multiple regression of factors influencing PS success and found that beliefs 

explained unique variance within the model.  
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In seeking to measure students’ beliefs about mathematical PS specifically, Kloosterman 

and Stage (1992) created the Indiana Mathematics Beliefs Scales (IMBS). The IMBS has six 

total scales including five original scales and a sixth scale that was adapted from questions 

from the Fennema-Sherman Usefulness Scale (Fennema & Sherman, 1976). Each scale was 

constructed to be used independently from the rest (Kloosterman & Stage, 1992). Since their 

creation, the scales have been widely used and applied in multiple contexts and countries 

(Iannone & Simpson, 2019). The present study was guided by the following research 

question:  

Can scales 1, 5, and 6 of the IMBS be reduced in length to reduce survey fatigue while 

retaining adequate internal consistency?  

Survey fatigue can be described as over-exposure due to survey length; effort required to 

respond or repeat administration; this can result in participants feeling overwhelmed and lead 

to potentially incomplete or lower fidelity data, or even participant withdrawal from studies 

(Fass-Holmes, 2022).  

Methodology 

Participants 

The participants consisted of 227 middle-school students with 121 in 6th grade and 106 in 

7th grade. All participants were drawn from a large, suburban, district that was located on the 

West Coast of the United States. Participants' ages ranged from 11.5 years old to 14 (M = 12.43, 

SD = 0.57) with 116 identifying as male, 111 as female, four as non-binary, and one who 

preferred not to self-identify gender. Regarding ethnic identity, 24 identified as Black or African 

American, six as Asian, 79 as Latin(x), one as Native American, 65 as White Non-Latin(x), 30 

identified as “Other”, 10 as two or more races, and 12 who preferred not to self-identify.  

Data Sources 

We administered three scales that were selected based on the goals of the cooperating 

district. Specifically, data were collected on IMBS belief scale 1 (I can solve time-consuming 

mathematics problems), belief scale 5 (Effort can increase mathematical ability), and belief scale 

6 (Mathematics is useful in daily life). Each scale consists of 6 Likert-style items for a total of 18 

questions. The scales were designed for use with secondary and college students and evidence of 

validity for the scales include item structure through item scale correlations and test content 

through expert review, in addition to reliability calculations (Kloosterman & Stage, 1992; Krupa 
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et al., 2024). All items were administered using a continuous sliding scale allowing any value 

between 0 and 100, inclusive, to improve the reliability of the measures (Schraw, 2009).  

Analysis 

All analyses adhered to methods from Tabachnick and Fidell (2019). All data were tested for 

requisite statistical assumptions prior to data analysis, including univariate and multivariate 

normality, collinearity, reproducibility of the correlation matrix, univariate and multivariate 

outliers, and the Kaiser-Meyer-Olkin (KMO) Test of Sampling Adequacy (Tabachnick & Fidell, 

2019). Data were normally distributed at the univariate (all skewness and kurtosis values were 

less than the absolute value of 2) and multivariate levels (all standardized residuals were less 

than 2 standard deviations of their respective means), with no collinearity present in the data (all 

zero-order correlations were < 0.80). Further, outlier analyses revealed no extreme outliers at the 

univariate (via box-and-whisker plots) or multivariate level (via Mahalanobis Distance). 

Descriptive statistics were computed for all measures utilizing IBM SPSS 27 software. 

Exploratory factor analysis (EFA) with common factor extraction (principal axis factoring 

[PAF]) and oblique rotations (promax) were employed to examine whether the original scale 

could be reduced in length. We chose this approach for two reasons. First, our analyses were 

grounded in theoretical assumptions regarding the relations among these indicators of 

mathematics anxiety, and hence, justifying the EFA rather than the principal components 

analysis (PCA), which is atheoretical and purely statistical.  

Second, we selected PAF as our extraction method because, unlike PCA, which assumes all 

communalities to be 1, PAF employs the multiple squared correlation coefficient, R2, to 

determine communalities after extraction. Also, unlike maximum likelihood extraction, which 

attempts to maximize the variance of the solution and may overestimate the explained variance, 

PAF is a more conservative solution.  

Finally, we employed an oblique rotation because we assumed, based on theoretical 

considerations, that the factors, if multiple, would, in fact, be correlated. The overall model fit, 

the standardized factor loadings, and the explained variance each factor contributed to its 

indicators were analyzed for this purpose for the reduced version of the measure. Our modeling 

procedure began by including all 18 of the original items. We chose standardized factor loadings 

≥ 0.35 because, as a measure of effect, this indicates that ~12% of the item’s variability is 

attributable to the latent variable (Tabacknick & Fidell, 2019).  
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Results 

      Descriptive statistics, internal consistency reliability coefficients (Cronbach’s alpha), and the 

zero-order correlation matrix for the original IMBS scale and for the shortened 11-item scale are 

presented in Table 1.  

Table 1 

Descriptive Statistics and Zero-Order Correlation Matrix for the Three IMBS’s for 

Mathematical PS Beliefs for the Original 18-Item Measure and the Shortened 11-Item Version 

Scale M SD α 1 2 3 

1. Difficult Problems ([original] 
6/[shortened] 5 items) 

78.84 a/ 
75.53 b 

17.48 a/ 
17.53 b 

.87 a/ .85 b - .47* -.41* 

2. Math Utility Value ([original] 
6/[shortened] 3 items) 

58.52 a/ 
32.33 b 

20.74 a/ 
5.72 b 

.66 a/ .76 b -.41** - -.40** 

3. Effort ([original] 6/[shortened] 
3 items) 

38.13 a/ 
56.59 b 

4.18 a/ 
22.42 b 

.69 a/ .77 b .35** -.35** - 

* p < .05 ** p < .01 (one-tailed test of significance) Note. The correlations above the diagonal are for the original 
18-item measure and those below the diagonal are for the shortened 11-item measure. a Original 18-item measure b 
Shortened 11-item measure; N = 227 

 Factor Analyses 
The EFA results with common factor extraction–PAF–and an oblique rotation (promax) were 

interpreted next. Inspection of preliminary analyses revealed no difficulties in the data to 

reproduce a correlation matrix. Finally, the KMO Tests of Sampling Adequacy was appropriate 

for both original scale (KMO = .864, χ2 (153) = 1702.09, p < .001) and the 11-item shortened 

version (KMO = .886, χ2 (91) = 1158.86, p < .001), thereby permitting the factor analysis to be 

conducted. As with the original scale, we hypothesized a three-factor solution. This decision was 

made for theoretical reasons and based on prior research rather than allow a freely estimated 

solution with eigenvalues greater than 1. 

Original Indiana Scale 

The EFA with a PAF common extraction and a promax oblique rotation for the original 18-

item IMBS yielded a three-factor solution which explained 46.09% of cumulative variance. The 

correlations among the three factors ranged from r = .12 to r = .64 in absolute value. Descriptive 

statistics, communalities after extraction, and standardized factor loadings for this solution are 
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presented in Table 2. One item in the word problems scale and two items in the effort scale did 

not load onto any factor, and hence, only 15-items of the 18 were retained. 

Table 2 

Descriptive Statistics, Communalities, and Standardized Factor Loadings of the Final Model for 

the Original 18-Item Indiana Scales for Mathematical PS Beliefs 

Item M SD Com. DP MUV EF 

DP1 81.15 21.45 .73 .90     

DP2 77.62 22.65 .59 .84     

DP3 77.00 22.29 .52 .78     

DP4* 81.53 21.42 .62 .73     

DP5* 80.27 22.65 .50 .71     

DP6* 73.67 25.56 .35 .63     

MUV1* 61.29 8.93 .59   .93   

MUV2* 64.36 12.85 .40   .77   

MUV3* 62.85 8.36 .50   .73   

MUV4 69.67 25.87 .56   .41   

MUV5 70.54 26.29 .73   .41   

EF1 58.80 28.47 .47     .73 

EF2 49.30 13.03 .31     .69 

EF3 63.12 29.94 .30     .51 

EF4 64.44 30.11 .59     .40 
Key: Com. = Communality after extraction; DP = Difficult Problems; MUT = Math Utility Value; EF = Effort. * 
Reverse-coded item 

The EFA with a PAF common extraction and a promax oblique rotation for the shortened 11-

item IMBS also produced a three-factor solution which explained 52.53% cumulative variance. 

The correlations among the three factors ranged from r = .29 to r = .51 in absolute value. 

Descriptive statistics, communalities after extraction, and standardized factor loadings for this 

solution are presented in Table 3.  
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Review of both final EFA solutions yields some intriguing findings. The original 18-item 

IMBS is not only longer than our shortened version, but, evidently, it also leads to a degraded 

solution with appreciably lower explained variance. Whereas our proposed shortened 11-item 

version explains over 52% of variability in the items, the original 18-item version (Kloosterman 

& Stage, 1992) explains only approximately 46% of the variance in the items. Contrasting the 

standardized factor loadings for the solutions of the original version and the shortened versions 

leads us to conclude that factor loadings are generally higher for our proposed shortened scale, 

especially the lower-bound values, as some of the items in the original longer version not only 

manifested lower factor loadings at the lower bound, but also lower communalities after 

extraction. This, along with the more parsimonious measure than its original counterpart, 

supports our conclusion that our proposed shortened version, S-IMBS, is the better choice, 

especially when combined with other measures in a longer survey. 

Table 3 

Descriptive Statistics, Communalities, and Standardized Factor Loadings of the Final Model for 

the Shortened 11-Item Indiana Scales for Mathematical PS Beliefs 

Item M SD Com. DP MUV EF 

DP1 58.48 28.40 .46 .73     

DP2 63.02 26.72 .51 .66     

DP3* 67.64 31.01 .98 .69     

DP4* 66.33 28.88 .57 .68     

DP5* 80.10 22.69 .52 .41     

MUV1* 64.38 22.68 .70   .81   

MUV2* 61.41 28.84 .50   .77   

MUV3* 63.08 28.38 .61   .76   

EF1 77.18 22.52 .65     .83 

EF2 81.09 21.40 .71     .68 

EF3 81.31 21.36 .66     .64 
Key: Com. = Communality after extraction; DP = Difficult Problems; MUV = Math Utility Value; EF = 
Effort. * Reverse-coded items 
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Discussion, Limitations and Avenues for Future Research 

The present study provides evidence that Belief Scales 1, 5, and 6 can be shortened from the 

original 18 items to 11 items while maintaining adequate internal consistency. Moreover, the 

study adds to the evidence of validity supporting IMBS. Researchers should place a greater focus 

on ensuring that self-report measures are as short as possible, yet reliable and valid, to increase 

the odds that participants will yield accurate, complete data and avoid survey fatigue when 

completing measures. We have met this challenge by shortening a tool that measures an 

important psychological phenomenon, math PS beliefs.  

Despite these findings, the study is still limited by the sample of students which were all 

drawn from a single district. Thus, future research should consider replicating the study across 

contexts. Moreover, as this study only focused on three of the six scales from the original IMBS, 

future research should explore whether the remaining three scales can also be shortened.  
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This study explored how mathematics problem-solving constructed-response tests compared in 
terms of item psychometrics when administered to eighth grade students in two different static 
formats: paper-pencil and computer-based. Quantitative results indicated similarity across all 
psychometric indices for the overall tests and at the item-level. 

Our research team has developed and validated a series of paper-pencil, vertically equated, 

mathematical problem-solving measures for grades 3-8 called Problem Solving Measures (PSMs 

3-8) and shared findings from prior validation studies (e.g., Bostic & Sondergeld, 2015; Bostic et 

al., 2017). Each PSM was designed to align with the Common Core State Standards for 

Mathematics (CCSSI, 2011). To expand past scholarships, we began a multi-year process of 

developing and validating new items for a computer adaptive testing environment. Bostic and 

colleagues (2024) outline a validation study for the computer adaptive (CAT) mathematical 

problem-solving measures, which we call DEAP-CAT. During validation and development, we 

realized that general research on the comparability of results from paper-pencil and computer-

based test formats focused primarily on multiple-choice questions and results varied depending 

on testing contexts (Hamhuis et al., 2020). Further, there was a dearth of research comparing 

assessment psychometric properties between formats specifically related to mathematical 

problem solving. Thus, the purpose of this study was to psychometrically compare mathematical 

problem-solving constructed response item assessments using the same items administered to 8th 

grade students in paper-pencil and static computer-based formats.  

Relevant Literature 

Comparing Assessment Delivery Formats 

Research on the effect that assessment delivery format (i.e., paper-pencil vs. computer-based) 

has on testing results has yielded contrasting findings based on specific contexts, including 

content area, grade level, and item type (Hamhuis et al., 2020; McClelland & Cuevas, 2020; 
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Puhan et al., 2007). A testing mode effect refers to “the likelihood of differential student 

performance due to differences in how items are presented in [paper-pencil tests] versus 

[computer-based tests]” (Hamhuis et al., 2020, pp. 2341-2342). At times, research has shown 

that students perform better on paper-pencil tests compared to computer-based (e.g., McClelland 

& Cuevas, 2020; VanDerHeyden et al., 2023). However, other research found no significant 

difference in student performance based on testing medium (e.g., Hamhuis et al., 2020; Threlfall 

et al., 2007). Further, research has suggested that the existence of a testing mode effect may 

depend on individual students’ backgrounds and characteristics (Hamhuis et al., 2020). 

When specifically investigating mathematical constructed-response assessments, one study 

showed sixth-grade students performed better when the test was delivered in paper-pencil format 

rather than computer-based (McClelland & Cuevas, 2020). By taking a deeper look at how 

students engaged with mathematical word problems via paper-pencil and computer-based test 

formats, some research has shown students use different processes (Lemmo & Mariotti, 2017). 

These results imply that even if student performance in the aggregate is similar across testing 

mediums, it may not be appropriate to make comparisons of student performance across paper-

pencil and computer-based tests (VanDerHeyden et al., 2023). As such, VanDerHeyden and 

colleagues (2023) concluded that “reliability for the [early-childhood arithmetic test] is only 

established within each assessment format…but a score obtained in computer-based conditions 

could not be generalized to scores obtained under paper/pencil conditions and vice versa” (p. 98). 

While this seems to be a budding line of inquiry, in general, there is a scarcity of research 

comparing psychometric properties of test items (e.g., difficulty measures, standard error, 

reliability, fit indices) when the same items are administered in both paper-pencil and computer-

based formats, particularly for mathematics problem-solving constructed response items.    

Mathematical Problem Solving 

Similar to our prior testing scholarship, our research team drew upon two related frameworks 

for mathematical problems. One frame is that a mathematical problem is a task presented to an 

individual such that (a) it is unclear whether a solution or how many exist and (b) the pathway to 

a solution is uncertain (Schoenfeld, 2011). This framing is useful but is not comprehensive for 

word problem research. Hence, we draw from Verschaffel and colleagues (1999) framing for 

mathematical word problems as tasks presented to an individual that are open, complex, and 

realistic. Open tasks may be solved using multiple developmentally-appropriate strategies. 
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Complex tasks are not readily solvable by an individual and require productive thinking. Open 

and complex are connected with Schoenfeld’s framing of problems. Realistic word problems 

draw upon real-life experiences, experiential knowledge, and/or believable events. This notion of 

realism adds a necessary element to effectively frame word problems for our assessment. As a 

contrast, mathematical exercises are mutually exclusive from problems and are intended to 

support building an individual’s efficiency with a known procedure (Kilpatrick et al., 2001).   

Given these two synergistic frameworks for the CAT items and ensuing test, we chose Lesh 

and Zawojeski’s (2007) problem-solving framework for PSM mathematical problem-solving 

computer adaptive test, which reflects our past test development. Problem solving is a process of 

“several iterative cycles of expressing, testing and revising mathematical interpretations – and of 

sorting out, integrating, modifying, revising, or refining clusters of mathematical concepts from 

various topics within and beyond mathematics” (Lesh & Zawojewski, 2007, p. 782). Problem 

solving is something that takes time and concentrates goal-oriented efforts on a problem (Polya 

1945/2004; Schoenfeld, 2011), which differs from completing exercises.  

Method 

This research is part of a large federally funded, multi-year initiative to develop and validate 

items for use in grades 6-8 computer adaptive problem-solving tests. We drew on a design 

science approach (Middleton et al., 2008) due to its effectiveness in creating assessments through 

a cyclical process of designing, testing, evaluating, and reflecting. The current study fits into the 

design science approach by testing comparability findings when PSMs were administered in 

paper-pencil and static computer-based formats and then reflecting on results and usability. 

Participants & Instrumentation 

Multiple school districts from three states in the USA representing different geographical 

regions (i.e., Midwest, Mountain West, and Pacific), varying contexts (i.e., urban, suburban, and 

rural), and the uniqueness of students’ gender and ethnicity were purposefully selected for the 

larger project. Data from 8th grade mathematics students from those states were specifically used 

in this study. The samples were not identical across test administrations (because testing was 

anonymous), but both tests were delivered in the same schools with the same classroom teachers 

to maintain proximal consistency. Samples for these comparisons were 656 for paper-pencil and 

490 for computer-delivered. Final sample sizes ensured we met a minimal item exposure of 30 

students per item to properly calibrate performance and ensure statistical performance viability. 
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In addition, students identified as having a special needs or accommodation (e.g., extra time or 

tests being read to them) were excluded, to control for this potentially confounding variable. 

Only fundamental demographic data including gender- and racial/ethnic-identities were gathered 

and presented in Table 1. 

Table 1 

Final Sample Student Demographic Characteristics 

Student Demographics Testing Format 
   Values Paper-Pencil (n=656) Computer-Based (n=490) 
Gender   

Female 232 (35%) 145 (30%) 
Male 398 (61%) 335 (67%) 
Other 4 (1%) 2 (1%) 

   Not Reported 22 (3%) 8 (2%) 
Racial/Ethnic-Identity   

American Indian/Alaskan Native/First 
Nations 

7 (1%) 6 (1%) 

Asian 9 (1%) 10 (2%) 
Black or African-American 12 (2%) 7 (1%) 
Hispanic/Latino-a or Spanish Origin 48 (7%) 34 (7%) 
Middle Eastern or North African 1 (1%) 0 (0%) 
Native Hawaiian or Pacific Islander 7 (1%) 5 (2%) 
White 551 (84%) 410 (84%) 
Other 12 (2%) 7 (1%) 
Not Reported 9 (1%) 11 (2%) 

 

Our team sought to develop 240 CAT items for each grade level (i.e., grades six, seven, and 

eight). After numerous reviews during the item development phase of the project, a total of 182 

items associated with 8th grade mathematics content standards met expectations for testing with 

students. A sample 8th grade item addressing Number Sense CCSSM standards is provided to 

contextualize the word problems created for the CAT PSMs: “A chess board is made of eight 

rows with eight squares in each row. Each square has an area of 3 inches2. What is the exact 

length for one edge of the chess board?” Similar to past paper-and-pencil PSMs, the CAT PSMs 

are scored dichotomously.  

Data Collection and Analysis 

Tests for each delivery format were created using the same bank of 203 previously calibrated 

problem-solving items. All items in the bank were deemed functional during previous statistical 

evaluations and linked to one of the five content domains within 8th grade. To ensure 
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comparability of item calibrations both across delivery models (i.e., paper-pencil, computer-

based) and within each delivery model, a common item equating process using linking items was 

employed (Kedlermen, 1988). Linking items represent previously calibrated items that are 

consistent across all versions of the test to ensure that the calibration of items and person abilities 

are equivalent. Further, using Rasch (1960/1980) modeling places all items on the same linear 

scale. Linking ensures direct comparability of results and performance statistics. 

Paper-pencil tests were designed to be completed in a single 30-minute period, for ease of 

administration in the classroom. Forty-four versions of such tests were constructed, each 

consisting of one common item (used for equating) and three to four additional unique items. 

Each test covered at least four of the five standard domains within 8th grade. Each student, 

within a class period, took an identical paper-pencil test. Students were able to make use of 

classroom-provided calculators and scratch paper as needed during the administration.  

Computer-administered static-tests were designed and delivered through the FastTest 

System© (Assessment Systems Corporation, 2023) online under the same conditions used for 

paper-pencil administration. The full bank of items was entered into the FastTest System© and a 

set of 44 identical tests were generated. Each test mirrored the features of the original versions. 

To ensure integrity between paper-pencil and computerized test versions, items that included 

fractions, square roots, mathematical equations, diagrams, graphs, charts, and pictures were 

entered into the FastTest system as JPGs. This allowed students to see the same structurally 

formatted item regardless of test administration format. While students could not write on their 

computer screen apart from typing their response in a designated response box, they were 

allowed to use scratch paper for their work, if desired. A classroom-supplied calculator or an 

electronic calculator embedded in the examination were available for students. The embedded 

calculator was small enough to fit in the upper corner of the screen without blocking, covering, 

or hiding any element of the item or its accompanying graphics. Item exposure requirements 

were applied and the final comparison included 11 tests common to both delivery methods. 

Rasch (1960/1980) measurement for dichotomous responses was employed to conduct 

psychometric analyses for both research questions in this study using Winsteps software 

(Linacre, 2024). Rasch measurement has long shown its effectiveness in social science 

instrument development and validation (see Bond & Fox, 2007). Multiple psychometric indices 

were investigated. Rasch reliability is a measure of internal consistency (acceptable ≥ 0.70, good 
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≥ 0.80, excellent ≥ 0.90; Duncan et al., 2003). Separation specifies the distinct number of item or 

participant groups measured by the latent variable (acceptable ≥ 1.50, good ≥ 2.00, excellent ≥ 

3.00; Duncan et al., 2003). Average standard error of measurement (SEM) for items provides a 

measure of test precision with lower values indicating greater measurement accuracy. Item infit 

and outfit mean-square statistics between 0.50 and 1.50 logits are most productive for 

measurement and anything greater than 2.00 could distort measurement (Linacre, 2002). Item 

point-biserial correlations must be positive in value to demonstrate they offer measurement 

support, while negative point-biserial correlations suggest item removal is necessary as these 

items contribute in opposition to the latent variable’s meaning (Wright, 1992). With Rasch 

measurement, each item produces a difficulty measure in logits with higher values indicating an 

item is more challenging to answer correctly and lower values meaning an item is easier for 

students to correctly answer. Item difficulty measures were compared between administration 

formats and considered statistically similar if they fell within ±2 standard deviations.    

Findings 

In terms of overall test and item comparability between testing formats, all psychometrics 

indices were nearly identical and told the same story (see Table 2).  

Table 2 

Test and Item Performance Comparison 
 
Test and Item Psychometrics 

Testing Format 

Paper-Pencil Computer-Based 

Item Reliability 0.91 0.93 

Item Separation 3.63 3.57 

Average Standard Error 0.62 0.76 

Negative Point-Biserial Items 0 (0%) 0 (0%) 

Misfitting Items  1 (2.3%) 1 (2.3%) 

Statistically Easier Items 4 (9%) 2 (4.5%) 
 

To summarize: Item reliability and separation were “Excellent” for both (Paper-Pencil = 

0.91, Computer-Based = 0.93), SEM was approximately the same (Paper-Pencil = 0.62, 

Computer-Based = 0.76), no items had negative point-biserial correlations, and only one item 

was misfitting in each version. In terms of item difficulty: Among the 44 items across the 11 

tests compared, 38 items (86%) performed statistically similarly (within ±2 standard deviations) 

regardless of the testing format. Items that differed statistically in their difficulty measure were 
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relatively balanced with similarly small numbers being easier when delivered in paper-pencil (n 

= 4, 9%) and computer-based formats (n = 2, 4.5%).   

Discussion and Next Steps 

Our goal was to compare the consistency of test performance and the capacity of those items 

to measure student ability when delivered via paper-pencil or computer-based methods. While 

such comparisons for multiple-choice items have been widely presented in previous research 

(e.g., Puhan et al., 2007), a relatively small number of studies have explored constructed 

response options (e.g., McClelland & Cuevas, 2020), and even fewer comparisons have been 

made using mathematical problem-solving tests (e.g., Lemmo & Mariotti, 2017). Two notable 

findings were observed in our comparison study. First, no significant or practical differences 

were observed relative to overall test performance (e.g., Rasch reliability, separation, item 

statistics) when implementing in either delivery format. Second, the overall capacity for PSM 

items to measure persons remains largely unchanged by delivery method.  

Results from this study strengthen the evidence for using PSMs and comparing results 

regardless of delivery mode (paper-pencil vs. static computer-based). Next steps in our work are 

to test the computer-based items in a computer adaptive testing (CAT) delivery mode, as part of 

the design science approach. Our ability to compare the outcomes associated with delivery 

models before adding the CAT component helps to ensure that any differences uncovered during 

this phase are not simply the result of a change in delivery format. Given that results from 

delivery format comparisons have widely varied (Hamhuis et al., 2020), it is critically important 

that anyone considering moving a test from paper-pencil to computer-based delivery build in 

time to test comparability of overall assessment and item psychometrics.  
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We examined the use of an online, individualized, interactive Dynamic Geometry curriculum 
(iDGi), developed from learning progressions, with K-8 preservice teachers’ (PTs) learning of 
prototypical defining properties of quadrilaterals. These properties express in formal geometric 
terms the most visually salient spatial characteristics that students use in identifying different 
types of quadrilaterals and the interrelationships between quadrilaterals. We tested the 
effectiveness of iDGi with 541 PTs in multiple courses in which they took the same online 
multiple-choice tests to assess their understanding before and after using iDGi. Our conceptual 
test analysis shows that iDGi significantly increased PTs’ reasoning about quadrilaterals. 

 
Research has found that elementary teachers’ knowledge of mathematics is significantly 

related to their students’ achievement (Ball et al., 2005). As Ball et al. (2005) argue “How well 

teachers know mathematics is central to their capacity to use instructional materials wisely, to 

assess students’ progress, and to make sound judgments about presentation, emphasis, and 

sequencing” (p.14). Unfortunately, research has found that K-8 teachers lack the deep 

mathematical understanding needed to teach mathematics meaningfully (Ball et al., 2005). A 

major component for better preparing K-8 teachers to successfully teach mathematics is to 

enhance their conceptual understanding. In this project, we examined how an online learning 

progression (LP) based, Dynamic Geometry (DG) instructional unit supports pre-service K-8 

teachers’ (PTs’) understanding of geometry content. 

The study is an extension of a previous work that tested an online, individualized, interactive 

DG learning system for grades 3-10 that can be used by students independently or by teachers in 

classrooms (Battista, 2019). The resulting Individualized Dynamic Geometry Instruction (iDGi) 

learning system integrates the use of DG, formative-assessment, research-based LP, sequencing 

that interactively adapts to students' locations in LPs, and built-in student guidance. iDGi focuses 

on concepts from 2D geometry and measurement for grades 3-8.  

In this project, we utilized iDGi with K-8 PTs using iDGi modules for quadrilaterals, 

triangles, isometries, length, and area. iDGi includes experimenter-constructed, LP-based 

reasoning assessments that describe how students' learning develops and progresses for these 

geometric topics. Prior school-based iDGi research and development supports validity of these 
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assessments for testing impact iDGi has on student learning. For this paper, we focus on PTs’ 

learning of properties of quadrilaterals and the following research question: How does instruction 

with iDGi Quadrilateral modules and interrelated classroom instruction affect K-8 preservice 

teachers’ content knowledge of properties of, and interrelationships between, quadrilaterals? 

Theoretical Framework 

Learning Progressions 

LPs are playing an increasingly important role in mathematics education. According to the 

National Research Council, “Learning progressions are descriptions of the successively more 

sophisticated ways of thinking about a topic that can follow one another as children learn about 

and investigate a topic” (2007, p. 214). Battista (2019) stated, “A LP for a topic (a) starts with 

informal, everyday-cultural, pre-instructional reasoning typically possessed by students; (b) ends 

with related formal mathematical concepts; and (c) indicates cognitive plateaus reached by 

students in moving from (a) to (b)” (p.1). Within a constructivist framework, LPs are used in 

assessment, standards, curriculum design, teaching, and research (Sztajn et al., 2012).  

The van Hiele LP for Geometric Reasoning 

The van Hiele LP, as synthesized by Clements and Battista (1992), is as follows. Level 0 

Pre–recognition. Students are unable to identify many common shapes. Level 1 Visual. Students 

identify geometric shapes according to their appearance, but do not explicitly attend to geometric 

properties. Level 2 Descriptive/analytic. Students recognize and can characterize shapes by their 

properties, but do not see relationships between classes of shapes. Level 3 Abstract/relational. 

Students form sufficient definitions, distinguish between necessary and sufficient sets of 

conditions, interrelate shape categories, and sometimes provide logical arguments. Level 4 

Formal deduction. Students establish theorems within an axiomatic system.   

Dynamic Geometry Environments 

In DG, static shapes are replaced by manipulable, dynamic, property-constrained screen 

objects. It has been claimed that DG provides "a revolutionary means for developing geometrical 

understanding" (Mariotti, 2001, p. 257).  iDGi was created as an expansion of Battista’s (2012b) 

Shape Makers DG curriculum by extending it into an individualized online format. iDGi research 

with students from 5th, 8th, and 10th grades shows gains in student understanding of quadrilaterals 

(Battista, 2019). We investigated if similar gains in achievement are made with PTs.  Battista’s 

(2012a) LP in Table 1, an elaboration of the van Hiele levels, is the conceptual framework 
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underlying iDGi instruction and assessment. The goal of the iDGi Quadrilaterals unit is to move 

students to Level 2.3, and for older students into sublevels of Level 3. iDGi has inter- and intra-

module sequencing supporting movement through this LP.    

Table 1  
Battista's (2012a) Learning Progression for Geometric Shapes  
Level Sublevel Description 

1   Student identifies shapes as visual wholes. 
  1.1 Students incorrectly identify shapes as visual wholes. 
  1.2 Students correctly identify shapes as visual wholes. 
2   Students describe parts and properties of shapes. 
  2.1 Students informally describe parts and properties of shapes. 
  2.2 Students use informal and insufficient formal descriptions of shapes' 

properties. 
  2.3 Student formally describes shapes' properties completely and correctly. 
3   Student interrelates properties and categories of shapes. 
  3.1 Students use empirical evidence to interrelate properties and categories of 

shapes. 
  3.2 Students analyze shape construction to interrelate properties and categories of 

shapes. 
  3.3 Students use logical inference to relate properties and understand minimal 

definitions. 
  3.4 Students understand and adopt hierarchical classifications of shape classes. 
4   Student understands and creates formal deductive proofs. 

   
iDGi focuses, first, on developing prototypical defining properties, and second, property-

based interrelationships between shapes (Battista et al., 2018). As an example, the prototypical 

defining properties of rhombuses are “all sides congruent.” This property expresses in formal 

geometric terms the most visually salient spatial characteristics that students use in identifying 

rhombuses. In the iDGi Quadrilaterals unit, PTs develop reasoning about properties of squares, 

rectangles, parallelograms, rhombuses, kites, and trapezoids. iDGi software monitors both 

students' answers and their reasoning and branches to various places in the module based on this 

information. Branching is implemented by locating students in the LP, then using LP to decide 

on subsequent instructional activities. PTs needed to score 80% to proceed to the next module. 

Teacher Knowledge of Geometry 

Although K-8 PTs, ideally, should have attained van Hiele level 4 reasoning by the end of 

high school, many researchers have argued that PTs should at minimum be reasoning at van 

Hiele level 3 to effectively teach geometry to K-8 students (e.g., Knight, 2006; Van der Sandt & 

Niewoud, 2003). However, many studies have found that the majority of K-8 PTs are reasoning 

lower than level 3 (e.g., Knight, 2006). Moreover, Knight (2006) wondered if teachers can teach 
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geometry effectively if the target reasoning for their students is higher than their own level of 

reasoning. In the current research project, we examined how iDGi supports PTs’ development of 

geometric content that they will teach, and we compared PT knowledge to student knowledge. 

Methodology and Methods 

We hypothesized that using the iDGi Quadrilaterals unit, along with subsequent class 

activities and class discussions related to these modules, would significantly increase PTs’ 

knowledge of properties of quadrilaterals. We tested this hypothesis using the online multiple 

choice pre- and posttests that are built into the iDGi Quadrilaterals unit. We collected the 

following types of data: iDGi pre- and posttests, completion of iDGi modules, written homework 

related to iDGi coursework, and video recordings of all classes related to iDGi instruction.  

Participants for this study were 580 volunteer K-8 PTs enrolled in a required 10-week course 

for their majors at a university in the Pacific Northwest. The purpose of this course is to help PTs 

develop a conceptual understanding of the geometry and measurement topics found in grades K-

8. Data collection occurred from April 2018 to March 2024, with 26 courses taught using iDGi 

and one control group course. Data collection for six courses occurred during COVID-19 and 

were taught synchronously on Zoom. The remaining 21 courses were taught in a classroom.  

PTs were asked to complete iDGi quadrilateral modules online for homework prior to in-

class activities that addressed the covered concepts in iDGi modules. The course was taught 

using an inquiry-based teaching approach. A typical in-class lesson consisted of the following 

activities: 1) the instructor explained the directions for the class activity, 2) PTs worked 

collaboratively in pairs on the iDGi activity, 3) the instructor facilitated a whole class discussion 

related to their work. Class activities focused on iDGi module content or supplemental activities 

from Battista’s (2012b) Shape Makers DG curriculum. The iDGi Quadrilaterals unit was 

completed in eight to ten 50-minute class periods. Courses were taught by four different 

instructors: Dr. W (23 courses), Dr. G (1 course), Dr. B (1 course), and Dr. N (2 courses). All 

four instructors implemented the same lesson plans and activities and were trained in how to use 

iDGi applications. The same instructor, Dr. W, taught all the synchronous Zoom courses and 

tried to teach the course with as much congruence to the face-to-face instruction as possible.  

Results 
 Analysis of Mean iDGi Test Scores  

We did a statistical analysis of pre- and posttest scores to see if the iDGi Quadrilaterals unit 
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and class instruction are associated with the increased PTs’ achievement. We removed PTs who 

were repeating the course as well as PTs who did not complete one of the two pre- or posttests. 

The iDGi quadrilateral pre- and posttests were identical and were each split into two parts, which 

were analyzed separately. Note: PTs were never told that the pre-post tests were identical, the 

pre-posttests locked after completion, and PTs were never shown test answers. One possible 

threat to the internal validity of the pretest/post test design using the same test is that posttest 

effects might be affected by taking the pretest. However, in the school-based iDGi project 

assessment design, there was a pretest/post test control group in which students studied other 

parts of their mathematics curriculum while the treatment group did iDGi instruction. The grades 

8-10 control group consisted of 250 students (12 classes, 6 teachers). The scores were as follows: 

Pretest 1: M=55.87, SD=7.18, Pretest 2: M=55.53, SD=8.67, Posttest 1: M=59.22, SD=8.27, 

Posttest 2: M=60.13, SD=7.25. The pre-posttest relative increases were, Test 1: 5.99%, Test 2: 

8.29% [e.g., (59.22-55.87/55.87) = 5.99%]. Thus, there seems to be only a small test/retest effect 

in comparison to the pretest/posttest iDGi group gains of Test 1: 70.94%, Test 2: 47.68%.  

Quadrilaterals Test 1 measured attainment of Level 2.3. Quadrilaterals Test 2 measured 

attainment of Levels 3.2-3.4. We performed two statistical hypothesis tests, one for each of the 

pre-posttest pairs, Quadrilaterals Tests 1 and 2. The scores were as follows: Pretest 1: M=51.96, 

SD=17.71, Pretest 2: M=59.69, SD=19.5, Posttest 1: M=88.82, SD=11.74, Posttest 2: M=88.15, 

SD=12.35. The results for both pre-posttest pair differences were statistically significant (p 

<.0001), and we concluded that the posttest scores were significantly higher than pretest scores. 

Additional analysis found no evidence to support statistically significant different score 

improvement based on instructor, quarter, and modality. The mean scores of pretests 1 and 2 

were much lower than the mean scores of posttests 1 and 2, and the standard deviations of the 

pretest scores were much higher than the standard deviations of the posttest scores. Overall, 

99.6% of students had posttest scores greater than pretest scores for test 1 and 94% for test 2. 

In addition, we looked at a control group (same instructor, equivalent activities) that did not 

use iDGi to see if there was a difference in understanding of quadrilaterals at the end of the term. 

Control group PTs (n=39) took the same posttest as treatment PTs (Posttest 1: M=83.01, 

SD=14.57, Posttest 2: M=81.54, SD=16.07). Our statistical analysis shows that iDGi treatment 

PTs’ posttest scores were statistically higher than those of control group PTs (Test 1: p=.0183, 

Test 2: p=.015), suggesting that iDGi-based instruction helps students understand quadrilateral 
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properties at least as well as instruction that does not use iDGi.  

LP Analysis of Pre-/Posttests for PTs Compared to Students in Schools 

In the original study, a large scale field-test of iDGi Quadrilaterals was conducted with 46 

teachers and 2100 students in grades 5, 8, 9, and 10. Table 2 shows, by grade level, means of 

teacher means of percent of students who were at the Level 2.3 Two-thirds Benchmark (LP 

2.3B), along with the percents for PTs. The Level 2.3B indicates that students used Level 2.3 or 

3 reasoning for at least 2/3 of LP test tasks for 3 of 4 of the shapes—squares, rectangles, 

parallelograms, and rhombuses. The LP 2.3B is the most reasonable indicator of initial 

achievement of Level 2.3 reasoning because it indicates that most of the time, for a majority of 

the most common quadrilaterals, students used Level 2.3 reasoning.  

Table 2 
Grade Level Teacher Means for Quadrilaterals 1 Tests Using LP 2.3 {2/3} Benchmark 

  Grade 5 
(35 

teachers, 
n=1524) 

Grade 8 
(3 teachers, 

n=126) 

Grades 9-10 
(8 teachers, 

n=450) 

PTs 
(n=54) 

LP 2.3, 3 shapes 

PTs 
(n=54) 

LP 2.3, 4 shapes 

PTs 
(n=54) 

LP 2.3 {1}, 4 
shapes 

Pre-  LP 2.3B 
 

6% 
 

65% 
 

31% 
 

44% 
 

26% 
 

4% 
 

Post- LP 2.3B 35% 100% 90% 96% 87% 63% 

   
Grade 5. The mean teacher percent of Grade 5 students who achieved the LP 2.3B on 

Quadrilaterals Test 1 increased from 6% on the pretest to 35% on the posttest. So, although 

Grade 5 students made significant progress toward attaining Level 2.3 reasoning, they still had 

much to learn. However, importantly, the percentage of Grade 5 students reaching the LP 2.3B 

on the posttest (35%) was greater than the percent of Grades 9-10 students achieving it on the 

pretest (31%)—a testament to the amount of progress the Grade 5 students made in iDGi. Also, 

on the posttest, the mean percent of Grade 5 students per teacher who used Level 2.3 reasoning 

for at least one task for 3 out 4 of the basic shapes increased from 50% to 78%. Using L2.3 

reasoning at least once for each shape indicates transition toward Level 2.3 reasoning. So, about 

3/4 of the Grade 5 students were at least in transition to Level 2.3 reasoning on the posttest.   

Grade 8 (Advanced). The mean teacher percent of advanced Grade 8 students who achieved 

the LP 2.3B increased from 65% to 100%. Even more impressive, percent of Grade 8 students 

reasoning at Level 2.3 on ALL tasks for 3 of 4 basic shapes increased from 28% to 93%. 

Grade 9-10. The mean teacher percent of Grade 9-10 students who achieved the LP 2.3B 

increased from 31% to 90%, a huge change. However, the percentage of students’ reasoning at 
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Level 2.3 on ALL tasks for 3 of 4 basic shapes increased from 7% to only 56%, evidence of the 

difficulty that even high school students have using Level 2.3 reasoning consistently.  

PTs. The mean percent of PTs who achieved the LP 2.3B increased from 44% to 96%. The 

44% of PTs is far below the post-percent for Grade 9-10 students—suggesting that often PTs 

understand quadrilaterals less well than iDGi-instructed high school students. Although, the 

percent of Grade 9-10 students’ reasoning at Level 2.3 on ALL tasks for 3 of 4 basic shapes 

increased to only 56%, the percent of PTs’ reasoning at Level 2.3 on ALL tasks for 3 of 4 basic 

shapes increased from 26% to 87%, further evidence of the effectiveness of iDGi in moving PTs 

to Level 2.3 reasoning. The percent of PTs reasoning at Level 2.3 on ALL tasks for ALL 4 basic 

shapes increased from 4% to 63%, indicating the difficulty PTs had in always using Level 2.3.  

LP Analysis for Quadrilaterals 2 Pre-/Posttests: PTs and Grade 9-10 Students 

Table 3 shows, for Quadrilaterals Test 2, the mean teacher percentages of iDGi students in 

each grade level who were at the Level 3 70% Benchmark, indicating that students used Level 3 

reasoning for at least 7 out of 10 of the LP test tasks on Quadrilaterals Test 2. For grade 8, 

attainment of Level 3 reasoning increased from about half the students to almost all the students. 

For grades 9-10, attainment of Level 3 increased from about one-fifth of the students to almost 

two-thirds of the students. And for PTs, attainment of Level 3 increased from 41% to 94%, 

suggesting the effectiveness of iDGi in moving PTs toward Level 3.  

Table 3  
Teacher Means for Quadrilaterals 2 Tests Using LP 3 70% Benchmark  

  Grade 8 Grades 9-10 PTs  

Pre- LP 3 {70%} 
Post-LP 3 {70%} 

49% 
94% 

19% 
67% 

41% 
94% 

   

Conclusions and Discussion 

Research suggests that over a variety of curricula in a variety of countries and using a variety 

of assessments, a reasonable estimate for the percentage of students who achieve (on posttests) 

Level 2 or higher reasoning in the van Hiele LP in any of grades 5-9 is about 36% (Battista, 

2012a; Clements & Battista, 1992). Furthermore, only about 60% of high school students 

achieve Level 2 reasoning by the end of high school geometry (Senk, 1989). We can compare the 

36% Level 2 achievement reported above to the posttest means for iDGi Quadrilaterals LP 2.3B, 

which are 35% for Grade 5, and 100% for bright Grade 8 students. Also, compared to the 60% of 

high school students reaching Level 2 at the END of high school geometry, we have 90% for 
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iDGi grades 9-10 students and 96% for PTs. Overall, then, iDGi students and PTs showed 

impressive gains in developing Level 2.3 reasoning. One might argue that K-8 PTs who used 

iDGi have sufficient attainment of LP 2.3 to teach properties of quadrilaterals to Grade 5 

students, but they may struggle with advanced Grade 8 students on interrelationships.  

This research adds to the discussion of how teacher educators should design content courses 

based on LP to support PTs’ learning of K-8 geometry. These findings encourage other 

researchers to develop similar curricula for non-geometric topics. More research is needed on 

using LP tests to measure PT’s content knowledge and inform instruction in PTs’ content 

courses. Finally, research should investigate impact of iDGi-taught teachers on student learning. 
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AI is a dominant discursive theme in mathematics education. There is much talk about using AI 
to expedite the status quo and not enough talk about using AI in pedagogically transformative 
capacities. Positioning preservice teachers (PSTs) as agents of curricular change, we offer an 
initial report from a project exploring ways PSTs might use AI transformatively. In a number-
and-operation content course, we introduced 50 PSTs to Adobe Firefly, a text-to-image AI. We 
present (a) Firefly-generated images and related tasks, (b) sample responses from PSTs, and (c) 
preliminary analyses on a task. Theory and implications are considered.  
  

Artificial intelligence (AI) is an increasingly popular discussion topic in everyday and 

academic conversations, including within the field of mathematics education. Recommendations 

from professional organizations are emerging on the topic; for example, a recent National 

Council of Teachers of Mathematics (NCTM) President’s Message tasked mathematics 

educators “to learn how to integrate [AI] into [their] instruction and into our profession” 

(Dykema, 2023; see also AMTE, 2022). Precisely how mathematics teacher educators should do 

this is presently unclear. Here, we offer at least a partial possible response to Dykema’s call.  

Brief Review of AI Literature 

Walkington (2024) offered some progress on Dykema’s task by positing four uses of AI in 

mathematics education and providing numerous examples of research within each category: (a) 

mathematics problem-solving (e.g., OpenAI, 2024), (b) mathematics tutoring and feedback (e.g., 

Bastani et al., 2024), (c) adapting tasks to learner needs (Norberg et al., 2024), and (d) supporting 

mathematics teachers in planning (e.g., Beauchamp & Walkington, 2024). These are potentially 

overlapping categories, and we appreciate Walkington’s categorization, especially because 

organizational frameworks for AI in mathematics education are scarce, while uses are myriad. 

However, absent from Walkington’s explicit categories, though perhaps not from all studies she 

mentioned, was attention to the extent to which AI usage was pedagogically transformative.   

What is Pedagogically Transformative AI Usage? 

By pedagogically transformative AI-usage, we mean new pedagogical possibilities afforded 

by these technological advances that would not otherwise be possible or practical. AI usage is 

pedagogically transformative if teachers and students interact around AI-dependent materials in 
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new ways for a given classroom community. The notion of interaction is critical in our work (see 

also Steffe & Thompson, 2000). We are opposed to efforts aimed at reducing interaction between 

teachers and students; we have no interest in AI as a teacher replacement (cf. Erlwanger, 1973). 

Although there may be benefits to using AI to reduce time associated with the clerical work 

teaching, this is not our focus. We have little interest in perpetuating the status quo more 

expediently (i.e., pedagogically stagnant AI-usage); we are interested in complexifying pedagogy 

to gradually and recursively supplant broken aspects of the present-day educational system.  

When AI usage is pedagogically transformative, both students and teachers are “in-the-loop” 

when AI is involved. Teachers using AI without students in mind is not pedagogically 

transformative. Students using AI without teacher guidance or supervision is not pedagogically 

transformative. This is not to suggest students or teachers cannot work with an AI platform 

individually. Instead, we argue teachers’ anticipations and adaptations regarding students and AI 

usage is critical. Simply put, teachers should be anticipating conversations, experiences, and 

obstacles that students might have when engaging directly with AI or indirectly via AI-generated 

artifacts, and teachers should be adaptive when comparing their anticipations and actual 

enactments. Thus, the job of the teacher includes holding students, discourse, and AI-dependent 

didactic objects in mind. Further foundations for our work are offered below.   

Toward Theoretical Foundations for Our Work 

A complete exposition of the theoretical foundations of our work is not possible here. For 

brevity, we link this work to Greenstein and colleague’s (2023) work positioning teachers as 

agents of curricular change and Thompson’s (2002) theory of didactic objects. In Greenstein and 

colleague’s work, PSTs were tasked to design and 3D-print manipulatives that might be useful 

for supporting learning about mathematical ideas. Thus, teachers are positioned as curricular 

makers in addition to curricular interpreters. Like Greenstein et al. (2023), we position teachers 

as agents of curricular change and are interested in new pedagogical possibilities afforded by 

new technologies. Different from Greenstein and colleagues who considered 3D-printed 

curricular materials designed by PSTs (and rationales for them), we consider digital curricular 

materials created by PSTs via AI (and rationales for these materials).  

From Thompson (2002), a curricular material (e.g., a drawn representation, a 3D-printed 

manipulative, or an AI artifact) can be conceived as a didactic object, which is “a ‘thing to talk 

about’ that is designed with the intention of supporting reflective mathematical discourse” (p. 
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198). Thompson stipulates that didactic objects are not things in themselves; instead, didactic 

objects can only be called such when they are coupled with interactional considerations (e.g., 

anticipated hypothetical conversations about the didactic object with an eye toward particular 

mathematical ideas). Here, we focus on artifacts PSTs’ created via a particular generative AI, 

Adobe Firefly and the rationales they provided for these artifacts. The coupling of artifacts and 

rationales provides evidence for classroom interactions PSTs anticipated when they created the 

artifacts. Therefore, these couplings function as didactic objects.  

Context, Participants, and Methods 

We discuss our first-time incorporation of Adobe Firefly, a text-to-image generative AI web 

application, into a math content course for PSTs. Firefly is described on Adobe’s website as:   

Adobe Firefly is a family of creative generative AI models. Features powered by Firefly 

are embedded in Adobe’s flagship apps and Adobe Stock. The vision for Adobe Firefly is 

to help people expand upon their natural creativity. As both a standalone website and a 

technology that powers features inside Adobe apps, Firefly offers generative AI tools 

made specifically for creative needs, use cases, and workflows. (Adobe, Jan. 2025)  

At the time of the study, Adobe had released its second Firefly Image Model, which was 

advertised to be more advanced than the first. More critically, Adobe Firefly had also just 

transitioned from an entirely free firefly platform to a two-tiered credits-based platform. Users at 

the free-tier received a smaller number of credits per month (25) than did the pay-tier (1000). At 

the first author’s request, the university provided all participating PSTs access to the pay tier. For 

further information about Firefly, see Gómez Marchant & Hardison (2024).  

The first author taught two sections of a number-and-operation content course for PSTs who 

were seeking teacher certification for elementary or middle grades in Spring 2024. Across both 

sections, 50 PSTs participated in the study. Here, we discuss the introduction of Firefly, as well 

as implementation, and results from one Firefly-dependent activity. Using data from the 40 

participants who completed this assignment, we present examples and a preliminary analysis of 

PSTs responses. We note that all PSTs indicated having no prior experience with Firefly.  

Firefly-Dependent Didactic Objects and Rationales 

Introduction to Adobe Firefly  

Firefly produces images based on text descriptions (i.e., prompts) entered by users. However, 

initial image results may not fit users’ expectations. For example, on Day 1 of the course, the 



 

Proceedings of the 52nd Annual Meeting of the Research Council on Mathematics Learning 2025    61 

instructor introduced PSTs to Firefly by prompting, “high school math classroom.” Firefly 

produced a set of four images, one of which is shown in Figure 1 (Left). Notably absent from the 

first-draft images were students and teachers. Then, the instructor crafted a second-draft prompt, 

“high school math classroom with lots of students talking and laughing, computers, skylight, 

windows, trees” to generate more desirable (to the instructor) images; one of these second-draft 

images is shown in Figure 1 (Right). Through this first-day in-class demonstration, the instructor 

offered PSTs a strategy for achieving incremental progress in Firefly images by reflecting on 

previous image outputs and varying subsequent text inputs.  

Figure 1  

Instructor-Engineered Images, First (Left) and Second (Right) Drafts 

 
 

A Reflection on Addition/Subtraction and Adobe Firefly 

After having discussed problem types for addition/subtraction (Carpenter et al., 1999), PSTs’ 

were tasked with a reflection that involved (a) writing a compare-difference-unknown (CDU) 

story problem, (b) crafting and refining prompts to produce a Firefly image with countable items 

matching those in their story problem, (c) selecting a final image suiting their problem, and (d) 

writing a paragraph to explain why they designed the image the way they did. A compare 

difference unknown problem involves two finite disjoint sets of known sizes; the unknown to be 

determined is the difference in the sets’ sizes. Because Firefly does not handle numerical 

specifications precisely, we also provided PSTs’ written and in-class instructions on how to use 

Firefly’s “Edit” features; this way, PSTs could remove or add items to a generated image as 

desired. Sample problems, prompts, and images appear in Figure 2. For a sample explanation, 

see Figure 3. 

Preliminary Analyses 

Forty PSTs’ authored submissions for this assignment. Our analyses target the four separate 

components: problems, prompts, images, and explanations. Each of these components provides 
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insights into PSTs’ anticipations of using the image in a hypothetical mathematically 

pedagogical interaction. For problems and prompts, we computed basic descriptive statistics 

regarding number choices and character counts. For images and explanations, we leveraged open 

and axial coding (Corbin & Strauss, 1990) to identify common features of the didactic objects 

PSTs crafted. Currently, our analysis incorporates 4 image codes and 12 explanation codes (5 

codes reflecting edits PSTs made and 7 codes reflecting features mentioned; see Figure 4). The 

rationale accompanying the candies image in Figure 3 received the following explanation codes: 

students solving task, simple background, multiple ways to use image, and attention to item 

color.  

Figure 2  

Problems, Prompts, and Images Produced by PSTs 

 
 

Figure 3 

A PSTs Explanation for Problem-Prompt-Image B 

 
 

Preliminary Results for Reflection 3 

 Of the 40 submissions, six included non-CDU problems. Subsequent results reflect the 34 

PSTs who wrote CDU problems. In the problems PSTs authored, set sizes tended to be small 
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(ranged from 1 to 76 with mean 6.8 and median 4) as did unknown differences (ranged from 1 to 

11 with mean 2.8 and median 2). Prompts were submitted by 24 of the 34 PSTs. Prompts tended 

to be short with an average of 68 characters. For comparison, problems tended to be about twice 

as long with an average of 137 characters.  

Figure 4 

Current Explanation Codes 

 
Images tended to feature literal collections (91%) rather than figurative collections (9%). 

Half (50%) of the images featured visually disjoint collections. Nearly half (44%) of the images 

incorporated color to differentiate sets. Our current analysis of PSTs’ reflections, including 

features they considered and edits they reported making, appears in Tables 1 and 2. 

Table 1 

Explanation Codes (Number of PSTs with Percent out of 34 PSTs)  
Consider 

Students 

Solving the 

Task 

Indication of 

AI Counting 

Difficulties 

Simple 

Background 

Desired 

Mention 

Student-

friendly 

Context 

Multiple Ways 

to Use the 

Image 

Discuss Item 

Organization 
Attention to 

Item Color 

24 (71%) 9 (26%) 7 (21%) 10 (29%) 7 (21%) 17 (50%) 19 (56%) 

 

Table 2 

Post-Generation Edits (Number of PSTs with Percent out of 34 PSTs) 
PSTs Who Edited Add Items Remove Items Background Edit Color Edit Other Edits 
24 (71%) 8 (24%) 9 (26%) 3 (9%) 7 (21%) 4 (12%) 

 

Of particular interest was that 71% of PSTs explicitly indicated considering how students 

would engage with the images they were producing. For example, the PST who designed 

Problem-Image B in Figure 2 wrote: “Although unintended, I like how the soccer balls lined up 

so that students could use one-to-one ideas to solve the problem.” This quotation suggests the 

PST considered how spatial configurations within the image might support hypothetical 

students’ solution processes, and this insight was available to us due to PSTs’ interaction with 
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Firefly. Soccer balls are rarely “lined up” like this in the physical world. Firefly permitted artistic 

liberties, which may have pedagogical potential as argued by this PST.   

Closing Remarks 

In closing, we note that Firefly afforded us new possibilities for stimulating and 

understanding PSTs mathematically pedagogical ways of thinking. We emphasize that we are 

not currently exploring AI avenues for accomplishing the current work of teaching faster. 

Instead, we are interested in how teachers can use AI to teach in ways that were not previously 

possible; though more time consuming, the actions provide teachers with more agency in 

developing the discourse of their envisioned classrooms. As mathematics teacher educators, we 

used Firefly to generate new didactic objects (Thompson, 2002) for our in-class activities with 

PSTs, and we encouraged PSTs to create their own didactic objects; AI facilitated creating these 

didactic objects. Because our analyses are ongoing, we refrain from suggesting implications.  

At this time, we are satisfied with offering some powerful examples of ways PSTs used 

Firefly. From our perspective, AI-generated mathematically pedagogical imagery offered a novel 

context for PSTs to apply, extend, or explain their mathematical thinking. We also note that 

PSTs’ Firefly-dependent submissions offered us multimodal insights into PSTs’ mathematical 

and pedagogical thinking as we examined the prompts they engineered, the Firefly images they 

generated and selected, and the explanations they authored to explain and reflect on their 

activities. In subsequent analyses, we hope to further refine codes to more robustly characterize 

the didactic objects PSTs created. Furthermore, we hope to complete analyses on other tasks, 

which will reciprocally influence the analyses presented here.   
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PRESERVICE TEACHERS’ PERSONIFIED RELATIONSHIPS WITH 
MATHEMATICS 

 

This paper explores the complex formation of mathematical identity among preservice teachers, 
emphasizing the emotional and sociocultural influences that shape their perceptions and 
pedagogical approaches to mathematics. This study examines how preservice teachers’ 
personification narratives reveal evolving relationships with mathematics as they transition from 
students to educators. Participants confront past struggles, reframe their relationships with 
mathematics, and develop student-centered approaches, contributing to more inclusive and 
resilient classroom environments.  
 

Introduction 

Preservice teachers’ (PSTs) formation of mathematical identity is emotionally and 

socioculturally influenced, shaping their pedagogical approaches to mathematics. Grounded in 

both Cultural-Historical Activity Theory (CHAT) (Engeström, 2001; Roth & Lee, 2007) and 

Sfard’s Identity Framework (SIF) (Sfard & Prusak, 2005), this study examines how PSTs’ 

personification narratives reveal evolving relationships with mathematics as they transition from 

students to educators. Through these narratives, participants confront past struggles, reframe 

their relationships with mathematics, and develop student-centered approaches, contributing to 

more inclusive and resilient future classroom environments. This study implies that teacher 

education programs should consider personification activities and the importance of PSTs’ 

mathematics identities in preparing teachers to create inclusive learning experiences for their 

multilingual students.  

Literature Review 

Understanding PSTs’ development of mathematical identities can foster inclusive and 

resilient classroom environments. Mathematical identities are shaped by emotional experiences 

and broader sociocultural contexts (Di Martino & Zan, 2010; Lutovac & Kaasila, 2013; Yeh & 

Rubel, 2020). Societal expectations and institutional structures (Zazkis & Koichu, 2015) lead 

PSTs to often personify mathematics as a friend, foe, or authority. Reflective practices position 

PSTs to confront and reframe their relationship with mathematics, leading to empathetic, 

student-centered approaches in their future classrooms (Sfard & Prusak, 2005). This literature 
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review synthesizes research on mathematical identity’s emotional, cultural, and reflective 

dimensions. 

Emotional and Sociocultural Dimensions in Mathematics Learning 

Emotional and sociocultural factors shape PSTs’ mathematical identities, influencing their 

self-concept as learners and their future classroom practices. Positive and negative emotional 

experiences, including anxiety, frustration, joy, and resilience, affect their evolving relationships 

with mathematics (Di Martino & Zan, 2010; Lutovac & Kaasila, 2013; Zazkis & Koichu, 2015). 

Emotions regarding mathematics are deeply intertwined with cultural and linguistic 

backgrounds. Multilingual students’ simultaneous interpretation and translation of mathematical 

concepts across linguistic frameworks construct and hinder their mathematical identity (Yeh & 

Rubel, 2020). Academic mathematics instruction often overlooks students’ language practices, 

alienating many multilingual students (Esmonde, 2009). However, culturally relevant and 

inclusive pedagogy positions language and identity to positively shape mathematical learning 

(Esmonde, 2009; Nasir, 2014; Yeh & Rubel, 2020). In this study, reflective narrative and 

personification activities act as culturally relevant and responsive pedagogical (CRP) activities 

and as a motivation for employing such in classrooms. 

Power Dynamics and Identity Formation in Mathematics 

Reflecting emotional responses, broader societal expectations, and institutional pressures, 

PSTs’ personification of mathematics often reveals underlying power dynamics, with 

mathematics portrayed as a friend, foe, or authoritative exerting control over their learning. 

Viewing mathematics as a “challenging friend” or “trusted mentor” enables PSTs to transform 

previous struggles into constructive experiences, fostering resilience and growth (Sfard & 

Prusak, 2005; Zazkis & Koichu, 2015). However, when mathematics is personified as a “foe” or 

an “unapproachable authority,” it amplifies anxiety and self-doubt and reinforces negative self-

perceptions (Ramirez et al., 2016). Reflective practices within teacher education programs enable 

PSTs to confront and navigate these power dynamics, ultimately fostering empathetic and 

inclusive teaching approaches (Lutovac, 2019).  

Reflective Practices in Mathematical Identity Formation 

Reflective practices help PSTs address and reframe past mathematical experiences, fostering 

a positive, growth-oriented identity. Narrative and personification activities position PSTs to 

articulate complex emotions and transform mathematics from a “monster” or “foe” into a 
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“supportive mentor” or “trusted friend” (Zazkis & Koichu, 2015). Such activities encourage 

participants to externalize and reassess previous anxieties, highlight the role of resilience, 

reconstruct previous fearful relationships with mathematics to empowerment and agency 

(Lutovac & Kaasila, 2013), share vulnerabilities, and build student-centered learning 

environments (Parker, 2024; Tsoli, 2023).  

Theoretical Framework 

This study considers how PSTs’ personification narratives reveal their evolving relationships 

with mathematics as they transition from learners to teachers. To explore this question, we 

employ two complementary theoretical frameworks, CHAT (Engeström, 2001; Roth & Lee, 

2007) and SIF (Sfard & Prusak, 2005) , as robust lenses for examining the sociocultural 

dynamics and identity formation processes that shape teachers’ perceptions of and relationships 

with mathematics.  

CHAT (Engeström, 2001; Roth & Lee, 2007) describes how individuals’ identities and 

relationships with mathematics are shaped by their participation in social, cultural, and historical 

contexts. This allows us to examine how PSTs’ evolving relationships with mathematics are 

shaped by cultural norms, expectations, and power dynamics in mathematics classrooms, teacher 

education programs, and practicum experiences (Strutchens et al., 2017). CHAT highlights the 

role of culture and language in mediating learning and identity formation (Cole & Engeström, 

1993). Personification narratives allow PSTs to reflect on and, thereafter, negotiate their 

mathematics identities as they transition from learners to educators (Lutovac & Kaasila, 2014). 

CHAT recognizes existing tensions affecting change and development (Engeström, 2001). PSTs 

navigate the tensions between their experiences as mathematics learners and their emerging 

identities as mathematics educators (Strutchens et al., 2017; Lutovac & Kaasila, 2014).  

SIF articulates how identities are discursively constructed through stories individuals tell 

about themselves and their relationships with others (Sfard & Prusak, 2005), illuminating how 

PSTs’ personification narratives reveal their dynamically evolving and socially mediated 

mathematics self-perceptions (Lutovac & Kaasila, 2014). Sfard’s distinction between “actual” 

and “designated” identities highlights the tension between PSTs’ current self-perceptions and the 

expectations they believe others hold for them (Sfard & Prusak, 2005). This distinction denotes 

conflicts between teachers’ current relationships with mathematics and the professional 
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expectations of being confident, capable mathematics educators (Strutchens et al., 2017; Lutovac 

& Kaasila, 2014).  

Integrating CHAT and SIF creates a comprehensive lens for studying PSTs’ evolving 

relationships with mathematics through personification narratives. While CHAT provides a 

structured approach to examining the sociocultural dynamics and power relations within 

educational activity systems that shape teachers’ relationships with mathematics, Sfard’s 

framework considers the discursive construction and negotiation of mathematics identities 

through narrative. Together, these frameworks enable a multidimensional analysis of how PSTs’ 

personification narratives reveal the complex interplay between their experiences, social 

positioning, and aspirations concerning mathematics (CHAT) and the discursive construction of 

identity (SIF) that influence teachers’ evolving relationships with mathematics as they transition 

from learners to educators.  

Methodology 

This qualitative study employed a narrative inquiry approach to explore PSTs’ evolving 

relationships with mathematics through the lens of personification. Personification involves 

attributing human qualities or characteristics to non-human entities (Paxson, 1994). Narrative 

inquiry explores lived experiences and how individuals make sense of their personal and 

professional identities (Clandinin & Connelly, 2000). Personification narratives uncover the 

complex interplay of personal, social, and cultural factors that shape PSTs’ mathematical 

identities and pedagogical beliefs.  

The study involved 18 undergraduate and graduate PSTs in a teacher education program at a 

large public university in the United States. All participants had completed at least one 

mathematics methods course and had some experience working with students in classroom. 

Participants were asked to personify mathematics and craft a narrative that explored their 

evolving relationships with mathematics. The personification prompt [adapted from Zazkis and 

Koichu (2015)] included the following instructions:  

In about 300 words, tell a story about you and mathematics using personification 
(attributing human qualities or traits to a non-human entity). Consider: How long 
have you known each other? What does Math look and act like? How has your 
relationship with Math changed over time? Feel free to expand beyond these 
questions.  
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The data analysis followed a hybrid thematic approach, incorporating deductive and 

inductive coding strategies (Fereday & Muir-Cochrane, 2006), grounding the analysis in 

mathematical identity literature while remaining open to emergent themes and patterns in the 

participants’ narratives. The data was first analyzed and coded through two overarching 

deductive themes from the associated literature regarding PSTs’ evolving relationships with 

mathematics: power dynamics and sociocultural perspectives affecting their mathematical 

identities. The research team’s iterative and collaborative analysis identified emergent inductive 

themes in the narratives that were not captured by the deductive codes: Sites of Power 

Negotiation; Resilience, Resistance, and Empowerment; Reimagining Mathematics as a Tool for 

Empowerment; Cultural Contexts as Identity-Shaping Forces; and Sociocultural Influences on 

Pedagogical Beliefs. The data was then analyzed based on these inductive themes (codes). The 

findings presented below are thematically grounded around these two themes with pseudonyms 

being used for all participants. 

Findings and Discussions 

Theme 1 Power Dynamics in PSTs’ Evolving Relationships with Mathematics 

1a) Sites of Power Negotiation  

     Key emotional moments, such as frustration with calculus or joy in mastering algebra, were 

turning points in participants’ identity development. For example, Jenny described her 

fluctuating relationship with mathematics, from hatred to enjoyment and back to frustration, 

highlighting the nonlinear nature of her evolving mathematical identity. Similarly, Hanan 

recalled feeling anxious when encountering equations and formulas in high school, shifting her 

relationship with mathematics from comfort to distress. These emotional milestones, resulting 

from the CRP narrative and personification activities, reflect the power structures embedded in 

mathematical learning and the cultural norms that define success and failure in the subject.  

1b) Resilience, Resistance, and Empowerment  

     Participants revealed how emotional challenges fostered resilience, which they carried into 

their teaching practice as a form of empathy for struggling learners. Participants reclaimed their 

sense of agency and power regarding mathematics by reframing their struggles as opportunities 

for growth and empathy-building. Caitlin exemplified this by stating, “Math used to make me 

feel stupid, but now I realize that struggling is part of the process, and I want my students to feel 

okay with making mistakes.” This shift in perspective resulting from the personification 
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activities overcomes power structures that often position mathematics as a gatekeeper or a source 

of anxiety.  

1c) Reimagining Mathematics as a Tool for Empowerment  

     As participants envisioned themselves as teachers, they began to reimagine their relationship 

with mathematics, moving from a source of personal struggle to a tool for empowering students. 

Yarely stated, “Math felt amicable. After our many years of disagreement and a rather tiresome 

relationship, I finally gained an understanding of it. … I now think that I can get most students to 

understand more mathematics and feel the same.” By reframing mathematics as encouraging 

exploration and growth, Yarely positioned herself as a teacher empowered to create inclusive and 

supportive learning environments. This reimagining of mathematics through the lens of teacher 

identity shifts from mathematics as a power structure to teachers becoming agents of classroom 

change. 

Theme 2 Sociocultural Perspectives on PSTs’ Mathematical Identities 

2a) Cultural Contexts as Identity-Shaping Forces  

Participants’ cultural experiences, such as learning mathematics in multilingual environments 

or with family support, significantly shaped their attitudes toward mathematics and teaching. 

Sandy shared how mathematics bridged between her and her non-English speaking parents, 

stating, “Because math is a universal language, my parents were able to help me even though 

they didn’t know English. Practicing multiplication tables on the bus with my mom helped me 

see mathematics as something we could share.” Similarly, Rosanny described how mathematics 

provided comfort and familiarity as an English language learner, noting, “My classroom became 

a theater of numbers, where the language barrier held no power.” These experiences illuminated 

by the CRP narrative and personification activities recognize diverse cultural contexts that shape 

PSTs’ mathematical identities and the need for culturally responsive mathematics education. 

2b) Sociocultural Influences on Pedagogical Beliefs  

Participants’ sociocultural experiences also informed their pedagogical beliefs regarding 

teaching mathematics. Jieci shared how his early struggles with memorization and word 

problems shaped his teaching philosophy, emphasizing the importance of supporting struggling 

students. Similarly, Hanan reflected on how her anxiety in high school shaped her belief in 

student-centered learning, stating, “I remember how hopeless I felt when I didn’t understand 

equations. That’s why I want to teach in a way that makes students feel seen and supported, even 
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when math is hard.” Thus, some participants reframed their struggles as opportunities to build 

empathy, allowing them to develop pedagogical practices prioritizing emotional well-being and 

academic growth. 

Conclusion 

This study contributes to research on mathematical identity formation by revealing how 

PSTs’ relationships with mathematics evolve through the interplay of sociocultural factors, 

power dynamics, and identity formation as they transition from learners to educators. 

Participants’ narratives highlight emotional milestones and sociocultural influences, such as 

cultural background, language, and family involvement, that shape their mathematical identities 

and pedagogical beliefs. These findings underscore the need for teacher education programs to 

support PSTs in building positive, agentic relationships with mathematics, fostering more 

inclusive, culturally responsive, and empowering mathematics learning experiences for their 

future students.  
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There are several measures of self-efficacy of teachers’ mathematics or mathematics teaching. 
However, some scholars argue for improved validity evidence for these measures (McGee & 
Wang, 2014) and measures in mathematics education generally (Ing et al., in press). This paper 
reports initial validity evidence with K-12 preservice teachers for two different self-efficacy 
measures: one for mathematics teaching generally and another for a specific math pedagogy: 
concreteness fading. Results suggest strong initial validity evidence for these measures. 
 

Mathematics teachers’ self-efficacy for teaching is an important construct that has been 

found to predict classroom mathematics achievement (Küçükalioğlu & Tuluk, 2021) and has 

been associated with teachers’ pedagogical beliefs and actions (Tillman et al., 2013). However, 

such results are often inconsistent throughout the literature (Davis-Langston, 2012; Küçükalioğlu 

& Tuluk, 2021; Tillman et al., 2013). Some scholars have suggested that despite numerous self-

efficacy scales developed over the past several decades, “the creation of so many diverse 

measurement tools for teacher self-efficacy created confusion about the nature of self-efficacy 

itself” (McGee & Wang, 2014, p. 391). ￼In addition to the critique of a lack of test content 

validity, many scholars have noted the general lack of validity evidence and arguments provided 

across measures within mathematics education￼ (Carney et al., 2022; Ing et al., in press).  

The present study reports on the construction of a validity argument for two measures of 

teachers’ self-efficacy: self-efficacy for teaching mathematics and self-efficacy for concreteness 

fading. The purpose of this paper is to report the initial validity argument and accompanying 

evidence for these measures, with the eventual goal of assessing the affordances and constraints 

with self-efficacy scales of varying specificity to the domain of activity.   

Theoretical Framework 

Bandura (2023) defined self-efficacy as “people’s judgments of their capabilities to execute 

courses of action that are required to attain designated types of performances” (p. 53). Following 

this definition, self-efficacy for mathematics teaching involves teachers’ judgments of their 
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capacity to engage in effective pedagogy to attain effective learning contexts as evidenced by 

students’ mathematical reasoning and achievement. Unfortunately, scholars have observed 

mixed results regarding the relationship between teachers’ self-efficacy for teaching mathematics 

and mean student achievement (Davis-Langston, 2012; Küçükalioğlu & Tuluk, 2021; Tillman et 

al., 2013). Whereas there are inconsistent findings regarding teachers’ self-efficacy and their 

student outcomes, there are more consistent findings indicating relationships between self-

efficacy scores and teachers’ beliefs about and knowledge of mathematics and mathematics 

pedagogy (Olawale & Hendricks, 2023; Tillman et al., 2013). McGee and Wang (2014) observed 

this trend in research and noted that “efforts to measure teacher self-efficacy have become 

theoretically confused” (p. 395) with various measures conflating different forms of self-efficacy 

(i.e., of mathematics and of mathematics teaching), as well as belief constructs not specific 

towards Bandura’s (2023) theory within the same measure. This led to McGee and Wang’s 

(2014) development of a version of Tschannen-Moran and Hoy’s (2001) survey specific to 

mathematics teaching: the Self-Efficacy for Teaching Mathematics Inventory (SETMI). Of note, 

in our own review of self-efficacy for teaching measures that are associated with higher mean 

student achievement, it is the Tschannen-Moran & Hoy’s (2001) measure (Küçükalioğlu & 

Tuluk, 2021) that consistently demonstrated statistically significant and meaningful results while 

other common measures – e.g., Enochs et al.’s (2010) Mathematics Teaching Efficacy Beliefs 

Instrument (MTEBI) - did not (Davis-Langston, 2012; Tillman et al., 2013). Given this record, 

McGee and Wang’s (2014) efforts at developing SETMI is logical, as Bandura (2023) advocated 

for self-efficacy measures more specific to domains of practice. Although there are adaptations 

of SETMI with additional validity evidence, there is relatively limited evidence for SETMI 

beyond psychometric analysis and limited correlational analysis (McGee & Wang, 2014). 

Another potential issue with current self-efficacy for mathematics teaching measures is that 

they proport to assess mathematics teaching as a whole, rather than examining more tangible 

sub-domains of practice. Following Bandura’s (2023) recommendations, we conjectured that 

more specified measures may be of more pragmatic use in mathematics teacher education 

research. To this end, we developed a measure of teachers’ self-efficacy for enacting Bruner’s 

(1966) concrete-pictorial-abstract pedagogical approach in mathematics. Now referenced as 

concreteness fading, this pedagogical approach involves children engaging with a mathematical 

concept initially with a concrete representation, then transitioning to working with a pictorial 
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representation of the concept before finally transitioning to a fully abstracted (symbolic-only) 

representation (Fyfe et al., 2015; Laski et al., 2015). Thus, the Self-Efficacy for Concreteness 

Fading (SECF) measure was developed. 

Overview and Research Question 

The purpose of this paper is to present the initial validity argument for two surveys focused 

on self-efficacy for mathematics teaching: the SETMI, which focuses on self-efficacy for 

teaching mathematics in general, and the SECF which focuses on self-efficacy for teaching 

mathematics specifically through the concreteness fading (concrete-pictorial-abstract) 

pedagogical approach. We seek to examine an existing math-specific self-efficacy for teaching 

measure as well as a more fine-grained self-efficacy for teaching measure focused on a particular 

mathematics pedagogical approach. This includes review by experts for test content, cognitive 

interviews of preservice teachers (PSTs), and examination of data across different stages of 

PSTs’ teacher education program. Thus, we sought to answer the following research questions: 

Research Question 1 [RQ1]: Do the SETMI and SECF assess the domains they were designed to 

assess? 

Research Question 2 [RQ2]: How do SETMI and SECF distinguish between preservice teachers 

at different stages of their teacher education? 

Methods 

Sample & Procedure 

This mixed-method study aims to measure the self-efficacy level of pre-service math 

teachers. A convergent design (Creswell & Plano Clark, 2018) was used to merge qualitative 

findings from interviews with quantitative results from various data. The study was conducted at 

a large research-focused midwestern university in the United States. Participants included 

undergraduate PSTs (n = 152) majoring mainly in primary education (90.1%), as well as middle 

(0.7%), secondary (4.6%) or a K-12 licensure degree (4.6%). PSTs were enrolled in one of three 

courses: an introductory educational technology course (n = 33); an initial mathematics methods 

course focusing on place-value, addition/subtraction and geometry (n = 68); and a second 

mathematics methods course focusing on multiplicative reasoning and rational number (n = 50). 

Participants were predominately female (92.1%) and White (90.0%), with two participants 

identifying as nonbinary and several others identifying as underrepresented ethnicities (3.4% 

Black, 2.7% Hispanic, 2.8% Biracial/Multiethnicity, 0.7% Other Ethnicity).  
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All participants were asked to complete both measures within the first two weeks of the Fall 

2024 semester. A subsample of 12 PSTs enrolled in the educational technology course 

participated in one-on-one cognitive interviews at the beginning of the semester. Prior to the 

beginning of the semester, an eight-member panel of experts reviewed the content validity of 

items. Data collection is currently ongoing, with participants being asked to complete the self-

efficacy measures again at the end of this semester and in the next two semesters following.  

Measures 

McGee and Wang (2014) revised Tschannen-Moran and Hoy’s (2001) survey by focusing on 

7 of 15 items from the teaching efficacy and personal efficacy subscales and revising the 

wording to be mathematics specific (i.e., SETMI). SETMI demonstrated strong internal structure 

and reliability following a factor analysis. We used the same items from SETMI, but added 

math-specific adaptations of the 8 items they did not include from Tschannen-Moran & Hoy 

(2001). Example items from this 15-item revised SETMI (SETMI-R) are in Table 1.  

Table 1 

Example Items from Both Self-efficacy for Teaching Scales 
SETMI-R SECF 

5 To what extent can you adjust your math lessons to 
the proper level for individual students? 

2
7 

How well can you determine the activities/tasks 
to use manipulatives with? 

8 How well can you respond to difficult 
mathematical questions from your students? 

1
3 

How well can you teach students to do 
mathematics with pictorial representations? 

1
0 

How well can you provide appropriate challenges 
for very capable students in mathematics? 

3 How well can you introduce formal 
symbols/numbers when using pictorial 
representations? 

1
5 

To what extent can you help your students 
thinking conceptually about mathematics? 

7 How well can you support students' mathematics 
learning using the concreteness fading approach? 

 
The Self-Efficacy for Concreteness Fading (SECF) measure was developed based on 

descriptions of concreteness fading by various scholars (Bruner, 1966; Fyfe et al., 2015; Laski et 

al., 2015). Key in these descriptions were the focus on each particular stage being enacted in 

sequence. Thus, we wrote items focusing on the use of concrete manipulatives, pictorial 

representations, and the transition to fully symbolic representations from pictorial. We also 

drafted items focusing on the overarching approach to concreteness fading, using various 

wording. Table 1 illustrates examples of items, grouped by stage of concreteness fading.   

Analysis & Results 

Analysis focused on the collection and examination of validity evidence in line with 

recommendations from the Standards for Educational and Psychological Testing (AERA et al., 
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2014). Thus, a validity argument should integrate “various strands of evidence” (p. 21) across 

several studies. For this initial validity evidence (i.e., first study), we present evidence for test 

content and response processes to answer RQ1, and internal structure, relations to other 

variables, and generalizability to answer RQ2. Evidence for test content focuses on how well 

survey items assess the construct of self-efficacy for a domain. Evidence for response processes 

examines how participants engage with and interpret the items. Evidence includes cognitive 

interviews as well as psychometric data. Evidence for internal structure looks for how well items 

conform to a construct, and we used Rasch modeling to examine fit statistics and conduct a 

principal components analysis. For relations to other variables, we looked at correlations 

between the two measures as well as a t-test to examine whether PSTs further in their teacher 

education program had higher scores than those earlier in the program. Finally, generalization 

focuses on how well the measure can generalize to different situations and contexts, which we 

used item and person reliability to assess. In the pages that follow, we focus on the analysis and 

findings of particular data to examine the validity argument for each measure.  

Expert Reviews [RQ1] 

Validity evidence for test content was examined, in part, by analysis of expert review. We 

collected data from eight experts, including: three mathematics education researchers; three 

educational psychologists; and two master teachers. For each scale, experts were provided a 

definition of the construct to be examined, and were asked to rate each item for how relevant it 

was to the defined construct and provide typed notes. Following recommendations by Yusoff 

(2019), a content validity index (CVI) score was calculated for each item indicating how well 

items were rated as relevant. Acceptable CVI scores for eight experts were .83 for each item. 

Based on these criteria, for the SETMI-R scale, four out of 15 items were flagged for potential 

removal. Three were removed and the other rewritten based on expert feedback. For the SECF 

scale, 12 of 27 items were flagged for potential removal. Six of these were removed while the 

other six were revised based on written recommendations from the experts. Also, several experts 

noted a need for providing participants with explicit definitions for the terms concreteness 

fading, concrete-pictorial-abstract, and manipulatives and this was added to the survey.  

Cognitive Interviews [RQ1] 

Validity evidence for response processes regarding SETMI-R and SECF items was collected 

through cognitive interviews with 12 PSTs. Data collected was also used to examine the wording 
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of items, specifically noting item redundancy, structure, and participant lack of knowledge on 

technical vocabulary. The cognitive interviews included three leading questions for each 

assessment item: 1) What is your answer? 2) Why did you choose that answer? and 3) What was 

the question asking? All six authors independently coded the transcribed interviews; across 720 

responses from 12 participants, with a 99.3% agreement in coding. All SETMI-R items were 

interpreted by participants as intended. Three items for SECF (items 2, 11, & 27) had over 80% 

of participants interpreted the items as intended, but were retained for further analysis.   

Quantitative Analysis [RQ1] 

A Rasch analysis was conducted to assess internal reliability and provide additional evidence 

supporting the response processes for both the SETMI and SECF measures. Rasch converts raw 

ordinal data from Likert-based responses into continuous data using a logistic transformation 

(Bond & Fox, 2015). Rasch analysis for SETMI-R included a Rasch Principal Components 

Analysis of Residuals (PCAR), indicating that construct explained 56.3% of the standardized 

residual variance. The first contrasting construct had an eigenvalue of 1.92, suggesting the items 

measure unidimensional construct (Bond & Fox, 2015). The item reliability index was 0.89, with 

an item separation index of 2.86, indicating good differentiation across levels (strata) of items. 

Additionally, the mean square values for item infit (MNSQ = 0.99, Z = -0.09) and outfit (MNSQ 

= 1.00, Z = -0.05) confirmed that data fit the model. For the person reliability, reliability index is 

.93, with an item separation index of 3.61. Taken collectively, Rasch analysis for SETMI-R 

indicates strong evidence for internal structure, response processes, and generalizability.   

For the SECF measure, we applied the same Rasch validation process as used with the 

SETMI-R measure. First, PCAR revealed that the SECF items accounted for 72.5% of the 

observed variance. Notably, the first contrast eigenvalue for SECF was 4.59, explaining 6% of 

the total variance, with a secondary dimension at 2.66, accounting for 3.5%. A contrast 

eigenvalue above 2.0 may suggest dimensionality concerns, which is further supported if 

disattenuated correlations fall below 0.57. However, since no such correlations were identified, 

any potential dimensionality in SECF appears too weak to indicate a cohesive secondary factor. 

The SECF measure had an item reliability of 0.92 and separation index of 3.49. Person reliability 

was also good with a reliability of 0.97 and separation index of 5.60. Additionally, the SECF 

measure showed sufficient model fit, with item infit (MNSQ = 0.98, Z = −0.16) and outfit 

(MNSQ = 0.98, Z = −0.21), and person infit and outfit values. As with the SETMI-R measure, 
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results from Rasch analysis provide strong evidence for SECF’s internal structure, response 

processes and generalizability. 

Evidence for Convergent Validity [RQ2] 

Convergent validity was examined with a Pearson correlation between SETMI-R and SECF 

scores (r = 0.66, p<.001). Results indicate a moderately strong relationship, suggesting that 

higher self-efficacy in teaching mathematics (i.e., SETMI-R) is associated with higher self-

efficacy in applying concreteness fading (i.e., SECF). Next, we compared the self-efficacy scores 

of PSTs at the beginning of their first and second mathematics methods courses on SETMI-R 

and SECF measures. Independent samples t-tests found a significant difference in SETMI-R 

scores (t = 1.85, p = 0.03), with PSTs in the second course (M = 1.65, SD = 1.34) scoring higher 

than those in the first course (M = 1.10, SD = 1.76). For SECF, a significant difference was also 

observed (t = 2.15, p= 0.01), with PSTs from the second (M = 0.56, SD = 2.72) having higher 

scores than those from the first (M = -0.64, SD = 3.17). Results suggest that progression from the 

first to the second mathematics methods course is associated with increased self-efficacy in both 

teaching mathematics and using concreteness fading. 

Discussion 

Results presented here are preliminary but suggest that both the SETMI-R and SECF have 

good evidence towards the validity argument for each. Despite each measure being specific 

towards the domain of mathematics teaching and demonstrating a moderately strong correlation 

(r = .66), these measures are distinct. Results from cognitive interviews, t-tests, and Rasch 

analysis indicate that primary-grades PSTs tend to have lower perceived self-efficacy for 

concreteness fading than mathematics teaching generally. These differences may be due to what 

others have noted regarding specificity of self-efficacy measures (Bandura, 2023; McGee & 

Wang, 2014). Whether, and to what degree, such differences in scores informs the 

interpretability of these scores is a topic for future study. Future evidence should include 

longitudinal data from PSTs as well as data from in-service teachers, including data on their 

mathematics academic achievement for convergent validity.  
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In this paper, we investigated how undergraduate students’ perceptions of the roles of proof 
transformed through active-based instruction in a semester-long course. Although participants 
did not receive explicit instruction on de Villiers’ (1990) five roles of proof, our results indicate 
that most students developed a greater appreciation and understanding of the roles of 
explanation and verification. Furthermore, our results suggest that students recognized that 
proof communicates mathematical concepts and facilitates the negotiation of argument validity 
during proof-related activities. 

Introduction 

Proof has gained increased attention in K-16 mathematics curricula due to its essential roles 

of verification, explanation, communication, discovery, and systemization, deepening learners’ 

understanding of mathematics and enhancing the communication of mathematical ideas (e.g., de 

Villiers, 1990; Knuth, 2002; Stylianides, 2007). At the undergraduate level, mathematics majors 

are expected to construct, evaluate, and validate proofs in proof-intensive courses; however, 

research shows that students often struggle with proof due to overemphasizing establishing truth 

(e.g., Baxter-Bleiler & Pair, 2017).  

As narrow perceptions of proof can lead students to overlook its necessity, Bleiler-Baxter and 

Pair (2017) found that five activities—presenting, discussing, conjecturing, working on problem 

sets, and critiquing—enhance engagement with the roles of proof as described by de Villiers 

(1990). Their study explored students’ perceptions of these roles in an active-based proof course 

but did not assess alignment with de Villiers’ framework, highlighting a gap in research. 

Understanding the alignment (or misalignment) between students’ perceptions and those of 

professional mathematicians is crucial for identifying misconceptions about the role of proof, 

especially since students may retain these misconceptions despite exposure to the five roles. This 

paper examines undergraduate students’ perceptions of the five roles of proof as well as 

compares these perceptions to professional mathematicians’ conceptions as outlined by de 

Villiers (1990) in a transition-to-proof course designed to bridge non-proof-intensive courses 

(e.g., Calculus I, II, III) and proof-intensive courses (e.g., Abstract Algebra, Linear Algebra, and 

Number Theory). 
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Theoretical Perspective 

In the mathematics community, proof serves five distinct roles—verification, explanation, 

communication, systematization, and discovery—highlighting the social and sense-making 

processes in mathematicians’ proving practices (e.g., de Villiers, 1990). From a constructivist 

perspective, these roles are tools for validating mathematical statements and opportunities for 

learners to actively construct meaning and develop deeper conceptual understandings (e.g., 

Vygotsky, 1978). Verification focuses on establishing the truth of statements, often leading 

students to view proof solely to confirm correctness. However, mathematicians are interested in 

the explanatory power of proof, as it clarifies why a statement is universally true and promotes 

insights into underlying concepts (de Villiers, 1990; Knuth, 2002). Mathematicians also share 

ideas and organize arguments within a deductive framework of definitions, axioms, and 

theorems, thereby creating a systemization of results with proofs. This role of proof links 

seemingly unrelated concepts, fosters discovery, analyzes properties within statements, and 

prompts further proofs and insights. However, discovery is frequently overlooked due to the 

misconception that it only occurs before proof (de Villiers, 1990). 

Additionally, communication is crucial in the proving process, as mathematicians share ideas 

to enhance the purpose of proofs in addition to the other roles (Bleiler-Baxter & Pair, 2017; de 

Villiers, 1990). As Hanna (1990) notes, “the acceptance of a theorem by practicing 

mathematicians is a social process” (p. 8). Active-based instruction of proof is essential to bridge 

the gap between how mathematicians and undergraduate students perceive the roles of proof. 

This approach fosters an environment where undergraduate students engage in proving processes 

similar to those of professional mathematicians (de Villiers, 1990; Cilli-Turner, 2017). 

Methods 

Seventeen undergraduate students enrolled in a Discrete Mathematics course—a transition-

to-proof course—at a Midwest University in the United States participated in this study. The 

course met twice a week for 75 minutes over a 15-week semester, covering topics such as 

propositional and predicate logic, various proof methods (including direct proofs, proof by cases, 

contrapositive, contradiction, and mathematical induction), sets, relations, functions, and 

combinatorial methods.  

The course design, created by the instructor (the first author), drew on existing proof studies 

and emphasized a communal method of proof instruction. This approach encouraged students to 
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engage with proof as a social, negotiated, and sense-making process, as Ko et al. (2016) outlined. 

Through student-centered instruction, the instructor aimed for her students to experience and 

appreciate various roles of proof in mathematics, as de Villiers (1990) suggested, beyond the 

traditional role of verification. While fostering an appreciation for these five essential roles of 

proof was one of the course goals, the instructor did not explicitly name or discuss these roles 

during class activities. Instead, the course was designed to allow students to explore and 

internalize these concepts organically, without direct reference to the specific roles of proof 

outlined by de Villiers (1990). This implicit teaching approach aimed to provide a richer learning 

experience for students to explore various purposes of proof in mathematics. 

The primary focus of this paper is the participants’ responses regarding de Villiers’ (1990) 

five roles of proof. Specifically, the study examines their descriptions in Assignment 1-Part 2 

(pre-assessment) and Proving Journal 5 (post-assessment), with the relevant assignments detailed 

in Table 1.  

Table 1 

Questions about Five Roles of Proof in the Pre-Assessment and Post-Assessment 
Pre-Assessment 

Assignment 1-Part 2 (Early August 2023) 
Post-Assessment 

Proving Journal 5 (End November 2023) 

Read de Villiers’ (1990) article titled “The Role and 
Function of Proof in Mathematics.” In this article, you will 
find five roles/functions of proof that are discussed, namely, 
(1) verification, (2) explanation, (3) systematization, (4) 
discovery, and (5) communication. After reading through 
the article carefully, write 2-3 complete sentences to 
describe each of the five roles/functions of proof in your 
own words. Then, you need to think back on your past 
learning experience with proof (either high school or 
college) and identify a time when you believe you were 
engaged in each of the five roles/functions of proof (use a 
different instance for each of the five functions). 

I. Look back at your description of de Villiers’s 
(1990) five roles of proof (i.e., verification, 
explanation, systemization, communication, and 
discovery) from Assignment 1-Part 2. How has 
your description of each role of proof changed 
over this semester?  
 
II. Based on your explanation in part (I) above, be 
specific and describe clearly and completely your 
recollection of the instances that led you to think 
differently about your description of each role of 
proof.  

 

On the first day of class, a colleague requested consent to use students’ written responses 

related to proofs for research purposes. One student declined, and two did not turn in their 

Proving Journal 5, resulting in data collection and analysis focused on the work of the remaining 

14 students. Regarding the data analysis, an undergraduate student’s conception of a specific role 

of proof was assigned a code of “Y” if their understanding aligned with the coding definitions. 

These definitions were meticulously derived from de Villiers’ (1990) comprehensive description 

of that role, as outlined in Figure 1. Conversely, if a student’s conception did not correspond to 
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the coding definitions for that role, it was assigned a code of “N.” When a student’s response 

contained elements consistent with de Villiers’ (1990) description but included inconsistent 

parts, we coded their work as “PA.”  

Figure 1 

Analytical Framework for Five Roles of Proof (adapted from de Villiers’ (1990) work) 

 
To ensure a rigorous and comprehensive analysis, both authors independently reviewed the 

written interpretations provided by the participants. They then compared these interpretations 

using de Villiers’ (1990) descriptions of the roles of proof. Following this initial coding process, 

both authors compared their coding. Any disagreements were discussed until the issues were 

resolved.  

Results and Discussion 

The data in Table 2 illustrate how undergraduate students' perceptions of the roles of proof in 

mathematics evolved over the semester. This evolution was analyzed using de Villiers' (1990) 

framework.  
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Table 2 

Undergraduate Students’ Perceptions on the Roles of Proof from a Mathematical Perspective in 

the Pre-Assessment and Post-Assessment 

Roles of Proof 

Alignment 
Pre-Assessment  Post-Assessment 

Yes (Y) Partial 
(PA) 

No (N)  Yes (Y) Partial (PA) No (N) 

Verification 3 (21%) 6 (43%) 5 (36%)  2 (14%) 7 (50%) 5 (36%) 

Explanation 4 (29%) 8 (57%) 2 (14%)  6 (43%) 6 (43%) 2 (14%) 

Systematization 2 (14%) 3 (21%) 9 (64%)  2 (14%) 2 (14%) 10 (71%) 

Discovery 6 (43%) 4 (29%) 4 (29%)  4 (29%) 3 (21%) 8 (57%) 

Communication 5 (36%) 5 (36%) 4 (29%)  5 (36%) 4 (29%) 5 (36%) 
 

Initially, students most aligned discovery as the primary purpose of proof, with 43% of 

participants (6 out of 14) viewing proof as a means of uncovering new mathematical insights. A 

close second was communication, with 36% (5 out of 14) seeing proof as a tool for expressing 

and critiquing mathematical ideas within their classroom community. In the beginning, 

systematization was the least recognized role, with a simplified understanding of essential 

organization. For students whose perceptions fully aligned with de Villiers’ communication role 

from the start, this alignment remained stable from pre- to post-assessment. For example, Zora 

initially described communication as a discourse function within proof: 

Communication is the function that allows discourse within a proof. What I  
believe de Villiers is getting at here is that we have to understand this is going to a 

 human audience, with a different thought process for each; the proof can be read in many 
 lights, not just the one you mean it to be. (Pre-Assessment) 
By the post-assessment, Zora’s description emphasized clear and precise communication of 

knowledge among mathematicians: 

Proof is a tool for effective communication among mathematicians. It allows  
mathematicians to convey their ideas, results, and reasoning to others in a precise and  
unambiguous manner. Clear and rigorous proofs facilitate the dissemination and  
understanding of mathematical knowledge. (Post-Assessment) 

 
While Zora’s initial response focused on communication for varied audiences, her post-

assessment highlighted that proof is a meaningful tool for conveying mathematical ideas. This 

shift reflected her growing understanding of the purpose of the communication role throughout 

the course. 
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Regarding verification and explanation, Table 2 shows that the overall percentage of students 

with fully or partially aligned perceptions remained constant from pre- to post-assessment. 

Additionally, there was notable growth among students who were initially less aligned with the 

explanation role. This understanding of these two roles could be tied to previous proof-related 

courses and the typical emphasis on the roles, especially verification (e.g., Bleiler-Baxter & Pair, 

2017; de Villiers, 1990; Knuth, 2002). By the end of the semester, Table 3 demonstrates that four 

students shifted toward fully recognizing the explanation, discovery, and communication roles.  

Table 3 

Undergraduate Students’ Shifts in the Roles of Proof from Pre-Assessment and Post-Assessment 

Roles of Proof 
Shifts from Pre-Assessment to Post-Assessment 

Increased Shift No Shifts Decreased Shift  

Verification 3 (21%) 8 (57%) 3 (21%) 

Explanation 4 (29%) 9 (64%) 1 (7%) 

Systematization 1 (7%) 11 (78%) 2 (14%) 

Discovery 4 (29%) 4 (29%) 6 (43%) 

Communication 4 (29%) 6 (43%) 4 (29%) 

 

These shifts occurred across various levels of alignment with de Villiers’ (1990) descriptions, 

including transitions from no alignment to partial alignment, partial alignment to complete 

alignment, or no alignment to full alignment. Adam’s responses illustrated this development, as 

he described that the explanation role “is stating that for a good proof instead of just verifying it 

should instead explain why the proof is a proof” in his pre-assessment. In his post-assessment, 

Adam commented, “[t]he explanation should go beyond just definitions and justifications but 

also really tell how and why the work done makes it proof.” Adam’s progression showed his 

understanding that proof is a rigorous tool for confirming truth and conveying underlying 

mathematical concepts. This example suggests that students developed a deeper view of the 

multiple purposes of proof in mathematics as they engaged more with the course materials over 

the semester. 

As seen in Table 2, systematization remained the least aligned role of proof throughout the 

semester. Many students tend to interpret the systematization role as organizing steps, axioms, 

definitions, and theorems in a logical sequence within a single proof rather than as a broader 
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structuring of unrelated definitions. They previously proved results to provide a global 

perspective on a mathematical concept across proofs. For example, Anna viewed systematization 

as breaking down and structuring mathematical concepts or conjectures in her pre- and post-

assessment, reflecting a more localized understanding of the role. Similarly, Brian described 

systematization as “the organization of a mathematical proof” in both assessments, focusing on 

the arrangement of steps within individual proofs rather than on interconnections across multiple 

proofs. This finding suggests that undergraduate students in the course primarily viewed the 

systematization role as an organizational tool for individual steps rather than a method for 

synthesizing broader mathematical ideas. This perspective aligns with Bleiler-Baxter and Pair’s 

(2017) findings, which indicate that many undergraduate students may have yet to fully 

experience systematization to link definitions, theorems, and proofs to develop a comprehensive 

understanding of mathematical concepts in their proof courses. Instead, it shows the breaking 

down of systemization as a system relating to organization, something that is expanded more in 

mathematics to include the global perspective of the whole, a concept nuanced enough for 

students who have not interacted with it previously to misunderstand (de Villiers, 1990). 

Discussion and Implications 

In this study, it is important to note that the undergraduate students in this active-based 

course did not receive explicit instruction on de Villiers’ (1990) five roles of proof in 

mathematics until the designated week when they read and reflected on his article. Furthermore, 

de Villiers’ (1990) roles do not encompass all perspectives on proof, nor does he claim to 

provide an exhaustive account of its functions. Although this study examined only 14 

undergraduate students regarding the roles of proof throughout the semester, the results indicate 

that students’ interpretations aligned most closely with the explanation and the verification roles. 

This alignment highlights that proof demonstrates both how and why a statement is true based on 

students’ prior experiences with proof-based courses. Future research could explore the long-

term impact of implicit instruction on college students’ understanding of the roles of proof. 

Although the emphasis on the communication role of proof decreased during the semester, 

most students generally recognized that proofs convey mathematical concepts and validate 

arguments during proof-related activities. This finding suggests that students may view proof as 

a means of communication alongside explanation and verification—an understanding critical for 

teaching and learning proofs (Baxter & Pair, 2017; Knuth, 2002). However, the results show that 
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students’ responses to the systematization role of proof are often misaligned with de Villiers’ 

(1990) framework. To better enhance undergraduate students’ appreciation and promote their 

understanding of the discovery role, future courses will incorporate tasks encouraging discovery, 

such as engaging students in finding unexpected results during proof construction.  
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While graduate teaching assistants (GTAs) are indispensable assets in higher education, many 
enter the classroom feeling underprepared to teach college mathematics courses. A case study 
on a cohort of GTAs focused on their engagement with product-based professional development 
(PD) and their beliefs on how the PD impacted their pedagogical skills and beliefs about 
mathematics instruction. The preliminary findings show that product creation positively 
impacted the GTAs' beliefs concerning PD. This research leads to the next proposed study 
regarding affecting GTAs’ self-efficacy. 
  

Introduction 

Only recently have universities considered PD for GTAs to be an integral part of teacher 

education. While GTAs are indispensable assets in many undergraduate learning programs in 

higher education, many GTAs have backgrounds in mathematics and limited teaching experience 

(Di Bendetti et al., 2022). Often, they rely on their mathematical skills and self-efficacy in 

teaching. Many of these beliefs stem from their student experiences due to a lack of teaching 

experience. While pre-collegiate mathematics education literature has emphasized sound 

instructional practices and teacher knowledge development (Deshler et al., 2015), current PD 

may not align with a GTA’s beliefs or self-efficacy in aligning beliefs and teaching knowledge.  

In this study, we examine the research question: How does product-driven PD, in which 

GTAs create artifacts or lessons for their instructional use, affect GTAs’ beliefs and self-efficacy 

about the usefulness of PD sessions? This study considers an alternative approach highlighting 

GTA product-based PD, wherein GTAs develop and provide evidentiary artifacts they can use in 

class instruction. Here, we present participating in GTAs’ preliminary responses and feedback 

about this PD methodology.  

Literature Review 

Teacher Professional Development (PD) 

 Effective teacher PD is characterized by sustained engagement, content relevance, active 

learning, and collaboration (Desimone & Garet, 2015). Long-term, job-embedded PD allows 

teachers to reflect on their practice, integrate new knowledge, and apply instructional strategies 
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aligned with current educational standards and the needs of diverse classrooms (Darling-

Hammond, 2017).  

Teacher beliefs regarding students, instructional materials, and teaching strategies develop 

from preservice experiences and evolve through interactions with students, colleagues, and 

professional learning (Noben et al., 2021). These beliefs can foster or hinder instructional 

innovation (Cross, 2009). For example, teachers who view mathematics as a fixed skill set may 

prioritize procedural teaching methods. In contrast, those with a growth-oriented perspective are 

more likely to adopt conceptual and exploratory approaches (Wilkins, 2008). Longitudinal 

studies suggest that sustained, reflective PD experiences can gradually transform beliefs, 

particularly when coupled with supportive school leadership and collegial collaboration (Cross, 

2009). Overcoming stubborn teacher beliefs is critical for adopting reform-oriented practices 

(Skott, 2014).  

GTAs play a vital role in higher education, supporting faculty, conducting lab sessions, and 

providing tutorial assistance. GTAs often enter teaching roles with limited pedagogical training, 

leading to variability in their instructional effectiveness (Gardner & Jones, 2011). Since the 

1990s, many universities have devoted resources to GTA training programs, successfully 

focusing on generic teaching skills, discipline-specific strategies, and pedagogical skills (Chiu & 

Corrigan, 2019). These have created a better learning and teaching environment, increasing 

teaching competency and improving the learning experience of undergraduate students (Gardner 

& Jones, 2011). However, the typical duration of GTA training programs, ranging from a few 

days to a semester, constrains GTAs’ development. Continuous support through mentoring, peer 

support, the commitment of senior academics to guide and support GTAs in teaching, and in-

class observation help them address ongoing teaching challenges (Deshler et al., 2015).  

Previous research has reported that formal GTA training programs can boost self-efficacy in 

teaching and effective teaching behaviors (Chiu & Corrigan, 2019). However, extended studies 

on GTAs' self-efficacy beyond the initial pre-service teacher education program are limited, with 

mixed findings (Langdon et al., 2017).  

Methodology 

Three-stage Case Study Design 

This project, positioned in a public state university’s mathematics department in the 

southeastern United States, follows a previous mixed-methods longitudinal study (Creswell & 
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Plano Clark, 2017) wherein the first author investigated the previous GTA cohort’s perspectives 

on the usefulness and meaningfulness of a PD project. Based on these results and the constant 

turnover of GTAs, the first author felt that a future case study would be appropriate to “seek a 

greater understanding of the case…to appreciate the uniqueness and complexity of the case, its 

embeddedness and interaction with its contexts” (Stake, 2006, p. 16). Thus, we will utilize three-

stage PD to follow the GTA PD experience through each phase of the GTA PD experience.  

This qualitative case study examines a cohort of eight GTAs during their first term of 

teaching undergraduate mathematics courses as part of their departmental service. The study is 

structured across three distinct stages, corresponding to three academic terms of the GTAs' 

assistantships. PD is integrated throughout the study, with each stage incorporating a specific PD 

phase: Stage 1 includes phase one of PD, the Stage 2 incorporates phase two of PD, and Stage 3 

implements phase three of PD. This synchronization ensures that PD aligns systematically with 

each stage of the case study. 

Stage 1 of this three-part case study, GTAs engaged in a comprehensive 15-week preparation 

period that combined co-teaching with mathematics faculty and weekly two-hour PD workshops. 

During this initial stage, GTAs participated in dual weekly sessions while observing and co-

teaching with university faculty. The GTA coordinator selected various pedagogical topics for 

discussion, followed by debriefing sessions on both the topics covered and co-teaching 

experiences. This exploratory stage was designed based on research recommendations that 

emphasized integrating theory with active learning, utilizing co-instructor feedback for 

community building, encouraging professional reflection, and implementing peer feedback for 

personal growth (Noben et al., 2021). The PD curriculum covered fundamental teaching 

elements, such as lesson planning, assignment creation, assessment development, class pacing, 

course planning, and classroom technology integration. This initial phase of PD served multiple 

purposes: to develop GTAs' understanding of mathematics instruction, enhance their confidence 

in course planning and daily lesson preparation, and foster a supportive community to address 

teaching-related anxieties and uncertainties. Additionally, this phase helped researchers identify 

relevant topics for the second phase of PD. 

Stage 2 of the case study coincided with GTAs beginning their independent teaching 

assignments in their second term. The accompanying PD phase focused on three main topics: 

Desmos activities, asynchronous learning and lesson planning, and guided inquiry learning 
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(GIL). These topics, selected based on first-stage observations and feedback, were explored 

through in-depth, multi-week sessions that promoted ongoing discussion, reflection, and product 

development. Guest speakers presented each topic across three two-hour sessions spanning three 

weeks, during which GTAs created practical teaching artifacts like lessons or activities. 

Following this, GTAs completed a questionnaire to evaluate the impact of this product-oriented 

PD on their teaching beliefs. This stage represented study's primary data collection phase. 

In the final stage, Stage 3, which aligned with GTAs' continued independent teaching 

responsibilities, participants selected and attended five PD sessions offered by either the 

university or department. GTAs documented how these sessions influenced their teaching and 

learning approaches. The stage concluded with a questionnaire prompting GTAs to reflect on 

how their second-phase PD experiences influenced both their third-phase session choices and 

their evolving beliefs about mathematics teaching and learning. 

Data Collection 

The study employed data collection through questionnaires and observations during the 

conclusion of the second and third stages. This methodology was selected to enable a thorough 

investigation of participants' viewpoints and interactions within the case study environment 

(Glesne, 2016). The approach provided structured yet adaptable exploration of GTA insights, 

allowing for the identification of themes and patterns crucial to qualitative research (Rubin & 

Rubin, 2012). Comprehensive, open-ended questionnaires were administered to all participants 

to elicit detailed feedback. The questionnaire asked GTAs to do the following: evaluate and 

prioritize PD sessions, provide rationales for their rankings, assess the value of creating 

instructional artifacts and their impact on teaching self-efficacy, share their evolving beliefs, 

propose future PD recommendations, and offer additional commentary regarding how the PD 

influenced their teaching confidence. 

Observational data collection occurred during PD sessions, documenting participant 

interactions, behaviors, and contextual elements to enhance case understanding (Yin, 2018). 

Following Emerson et al.'s (2011) guidelines, systematic field notes incorporated both 

descriptive and reflective observations. The analysis process integrated questionnaire and 

observational data to identify common and contrasting themes. This dual analysis approach 

aimed to synthesize self-reported attitudes and beliefs with observed real-time interactions, 

providing a more complete understanding of GTAs' perspectives. 
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Data Analysis 

Data analysis followed a thematic approach, with data initially coded and then categorized 

into preliminary themes that reflect the primary research question (Braun & Clarke, 2006). An 

iterative process of reading, coding, and revising codes was employed to identify patterns and 

emergent themes across cases after Stage 3 had concluded (Saldaña, 2016). GTA responses were 

coded as GTA1 through GTA8 and with a timestamp. Google software was utilized to organize 

and analyze data, allowing for the preliminary systematic coding and cross-referencing of themes 

across questionnaires. Thematic analysis enabled preliminary data exploration while preserving 

the complexity of participants’ perspectives. 

Preliminary Findings 

In this section, we provide GTAs’ preliminary responses and feedback about the associated 

PD solely from Stage 2. Full coding and theming did not take place at the time of this 

submission.  

Questionnaire Results 

All eight students responded to the questionnaire given at the end of Stage 2. Each GTA 

ranked their preferred second PD session (e.g., Desmos, asynchronous learning, and GIL). Most 

GTAs stated that the selected sessions were the most useful without additional reasoning. Others 

elaborated on their selections. GTA7 noted:  

I really loved learning about the different styles of teaching, like guided inquiry learning and 
even asynchronous teaching…  I could take different pieces and try to integrate them (or at 
least consider them) in my classroom. 
  
Question three asked GTAs if they believed creating artifacts or lessons/activities for their 

instruction was useful. Of the three answer options (Yes, No, and Uncertain), five stated 

uncertain, with three stating yes. Four GTAs stated that the topics “did not fit their teaching 

style” or “was not a good fit.” GTA4 noted, “I do not think those lessons really made a 

difference for me or the class. I prefer the other things (previous term) to prepare for class,” 

alluding to the Stage 1 PD. Two GTAs said they found the asynchronous sessions useful and 

would use them in class. GTA8 stated:  

Having to actually try some things out lets us see if we want to use them in our classroom. 
It's much more helpful to create the artifacts and have the experience making/using them 
rather than just knowing about them… That gives me more confidence that I could do that in 
the future, as well as opens the opportunity of being able to create this if I couldn't teach in 
person one day.  
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For question five, GTAs did not provide specific sessions/topics as suggestions but did 

provide potential adjustments to the current sessions/topics. Most felt the sessions could have 

been conducted in two weeks instead of three. Some GTAs noted adjusting the topics within the 

asynchronous sessions to add more discussions on humanizing the course. Conversely, two 

GTAs felt that more time needed to be spent on developing the asynchronous lesson or an 

activity.  

Observation Notes 

During the sessions, observations were recorded about the GTAs' involvement, emotional 

reactions, statements made, and reactions to questions/responses from the speakers. Observation 

notes for each session differed based on each topic. Positive reactions occurred for all three 

sessions in different phases. For the Desmos and asynchronous sessions, GTAs were more 

positive at the beginning of the sessions (first and second weeks) and seemed distracted, bored, 

and unengaged during the last session. This was corroborated by some of the statements in the 

questionnaire stating that sessions could have been shorter or presented on a shortened timeline. 

Conversely, in the GIL sessions, GTAs seemed disengaged during the first session, but 

interest grew over the second and third sessions. Several mentioned that once they could see how 

the process worked in the classroom, they began to see the usefulness of GIL. One GTA found 

the GIL sessions engaging and stated, “[they] wanted to make this their teaching style.” Another 

GTA noted they believed they could use aspects of it. One GTA adamantly disagreed with the 

approach, noting several times that it did not fit their teaching style and was “not applicable” to 

their classes.  

Concerning the products, most of the GTAs' artifacts were activities they could use in their 

mathematics lessons, and most of the Desmos artifacts were teaching/learning activities. One 

GTA created a Desmos activity as an asynchronous lesson. All GTAs in the synchronous 

sessions produced complete lessons to implement in their class. Only four students created a GIL 

activity for their class. When asked, they all said they ran out of time or forgot.  

Initial findings revealed mixed responses: while many GTAs valued the PD sessions and 

their created materials, some found limited utility in certain topics or artifacts, with one 

expressing concern about the practicality of the guided inquiry learning activity. Definitive 

conclusions about overall attitudes are premature as analysis of codes and themes is ongoing. It 

remains unclear whether GTAs had adequate opportunities to implement their materials. Several 
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participants, however, plan to use these resources in future courses, which will be explored in 

Stage 3.  

Discussion and Next Steps 

The research preliminarily examined how PD focused on creating tangible teaching materials 

influenced GTAs' self-efficacy of such development's effectiveness. The findings could inform 

future mathematics teacher PD initiatives, particularly regarding program scalability and 

adaptability. While primarily addressing GTA development, the research also suggests 

opportunities for exploring how product-oriented preparation enhances GTAs' pedagogical 

readiness, supports student learning in mathematics, and improves overall student support 

systems. 

The complete study aims to analyze Stages 2 and 3 comprehensively together, focusing on 

GTAs' developing self-efficacy regarding both the PD program and their teaching capabilities. 

Stage 3 provides expanded opportunities for GTAs to plan, create, modify, and implement their 

teaching materials. This extended implementation period aims to enable deeper self-reflection 

and a substantive evaluation of how PD influenced their instructional practices (Cross, 2009; 

Noben et al., 2021). 
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This study explores how a mathematics-related teacher identity influences the learning 
opportunities teachers provide. A teacher’s identity is shaped by the different interactions within 
various communities of practice (CoPs) at their schools. This can be visualized as interlocking 
gears that work together to build a teacher’s identity. These experiences contribute to the 
ongoing development of their identity. Understanding these dynamics can help schools and 
preparation programs equip teachers to navigate work and communication in their CoPs. While, 
additionally, fostering supportive communities that encourage positive identity growth, leading 
to improved math instruction and more equitable student learning opportunities.  

In recent decades, mathematics education research has begun to focus on the impacts an 

individual’s identity has on student engagement, teacher instruction, and retention (Aragon, 

2016; Day et al., 2005). Most people can recall pivotal moments that shaped their relationship 

with mathematics, whether positively or negatively (Wood, 2013). Understanding how these 

experiences influence teachers’ decisions in the classroom is valuable, as the saying goes, “we 

teach who we are” (Lutovac & Kaasila, 2018, p. 760). This is particularly true for mathematics, a 

subject that provokes strong emotions (Hodgen & Askew, 2007; Navas, 2023). By exploring the 

influences of mathematics-related teacher identity, we can better support teachers in making 

instructional and classroom decisions that foster a positive learning environment.  

The purpose of this narrative inquiry was to understand the ongoing construction of a first-

year teacher's mathematics-related teacher identity. To explore this, I used a communities of 

practice (CoPs) lens (Lave & Wenger, 1991), examining how the teacher’s identity developed 

through the interactions and sense of belonging within three different CoPs: grade team, 

classroom, and parent communities. The teacher in this study, Suzie, struggled learning 

mathematics and had only begun to gain positive experiences with mathematics during her 

teacher preparation program. Her story highlights the unique tensions she faced within each CoP 

impacting her planning and delivery of her mathematics lessons.  

Theoretical Framework 

To guide my understanding, I utilized three theoretical frameworks: the theory of experience, 

mathematics-related teacher identity, and sociocultural theory. Experiences are at the heart of 
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this study, emphasizing the importance to delve deeply into their meaning. Dewey’s (1997) 

theory of experience provides a lens for this understanding. Within this theory, there are the 

principles of continuity and interaction. The principle of continuity explains how every 

experience builds from one to another, with past experiences shaping future growth and 

interaction, similar to identity. The principle of interaction relates to the social dynamics between 

people and their surroundings (Dewey, 1997). Additionally, Gee (1999) highlights how social 

contexts influence individuals’ ability to engage and participate within groups. Experiences form 

the foundation of how individuals view themselves and interpret others’ perspectives of them 

(Gee, 1999; Lutovac & Kaasila, 2018), contributing to the development of their identity.  

Every person has their own unique identity that they have developed over their lifetime, and 

continue to develop (Meads, 1934). This view of identity is dynamic where an individual’s 

identity can change with new experiences and is constructed through the participation and sense 

of belonging in different social contexts (Gee, 1999; Kaasila, 2008; Lutovac & Kaasila, 2018; 

Navas, 2023; Sfard & Prusak, 2005; Wenger, 2010). Teachers who teach mathematics combine 

two identity aspects, their mathematical identity, and their teacher identity, to shape their 

mathematics-related teacher identity (Lutovac & Kaasila, 2018). The mathematical identity part 

relates to the relationship an individual has with mathematics, and teacher identity relates to the 

teaching practices and beliefs (Heyd-Metzuyanim & Shabtay, 2019). The way mathematics-

related teacher identity is viewed in this study is an ongoing process constructed through 

participation and belonging to different groups. Telling the narratives of these experiences also 

contributes to the shaping of a mathematics-related teacher identity, and it is seen as the process 

of being and becoming (Gee, 1999; Kaasila, 2007; Sfard & Prusak; Wenger, 2010). It impacts 

the instruction and behavioral decisions during a mathematics lesson. 

Lave and Wenger's (1991) community of practice (CoP) provides the lens for sociocultural 

attributes. There were three concepts of CoPs I focused on during this study: identity, trajectory, 

and participation. These three concepts meld together in a place where individuals can form their 

identity, see their trajectory (becoming), and participate within the community. There were three 

main CoPs my participant, Suzie, found navigating: grade team community, classroom 

community, and the community of the students' parents. 
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Methodology 

The use of a narrative approach allowed me to capture the complexities of lived experiences, 

which bring the experiences influencing identity to the forefront (Clandinin & Connelly, 1990; 

Moen, 2006). Stories and poems provide the reader with a way to connect deeper with the 

experiences where one can feel with, not just read about (Faulkner, 2019) the events. Suzie’s 

stories provide an understanding of how she perceives her experiences of participating and 

belonging in these different CoPs. These insights portray the construction of her mathematics-

related teacher identity. 

Suzie and I first met prior to this study when I tutored her to help pass the math portion of the 

general knowledge test required for her teaching certificate. During this time, we began to 

develop a strong, trust-based relationship. We stayed in touch as she progressed through her 

teacher preparation program. Later, Suzie shared the exciting news that she had been hired to 

teach a second-grade class, where she would be teaching all subjects. However, she also 

expressed some fear about teaching mathematics, as it had been a subject she struggled with in 

the past. I invited Suzie to participate in this research to explore how her mathematics-related 

teacher identity would evolve during her first year of teaching. Our prior relationship offered a 

unique opportunity to engage in rich, meaningful conversations. These discussions provided 

valuable insights into how Suzie was constructing her mathematics-related teacher’s identity. 

This relationship is referred to as a “research friend” (Connelly & Clandinin, 1990; Kim, 2016). 

Further details on the impact of this relationship can be found in my dissertation (Navas, 2023). 

Data and Analysis 

This was a longitudinal study with multiple data collections which provided me with two 

perspectives, a holistic understanding of Suzie's identity and how her identity was influenced in 

micro-moments. During the school year, Suzie and I met online 10 times. At the beginning of 

each meeting, I provided Suzie “the time and space to tell her story” (Connelly & Clandinin, p. 

4, 1990). I would then rephrase parts of her story to check my understanding of the events and 

her emotions. Additionally, I brought specific topics to discuss, often based on Suzie’s recorded 

reflection. The structure of these meetings was flexible where Suzie was encouraged to bring up 

anything she wished to discuss including emotional and trying times.  

Suzie also provided five recorded reflections focusing on her confidence planning and 

delivering a mathematics lesson. After each of our meetings, I wrote memos to capture the 
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emotions and tone I perceived. Through this process of sharing her stories and reflecting on her 

experiences, Suzie continued to construct her mathematics-related teacher identity. 

The meaning making process was ongoing and creative, beginning with my theoretical 

framework. Suzie’s narratives offered me a lens to understand her evolving mathematics-related 

teacher identity (Gee, 1999; Kaasila, 2007). I used reflexive thematic analysis to guide my 

approach (Richards, 2022). Each month, I listened to, read, and reread, the transcript from our 

meetings, and relistened to her recorded reflections. I wrote a holistic story each month to 

capture the experiences and emotion of our conversations, which were then shared with Suzie. 

As the year progressed, I revisited each story, gaining new insights and reflections on the most 

meaningful experiences. This iterative process allowed me to explore how Suzie positioned 

herself within each CoP and how her positioning evolved over time. Through these stories, 

recurring ideas began to emerge, leading me to create categories that encapsulated these ideas. 

With the addition of new stories, I was able to add new categories that reflectively richened my 

understanding of their significance. I organized these categories into broader themes. Confidence 

and Communication were the two main themes that emerged as central to the construction of 

Suzie’s mathematics-related teacher identity across all CoPs. I also observed that, while distinct, 

experiences in one CoP influenced interactions in another, highlighting their interconnectedness.  

Findings 

Throughout the school year, Suzie experienced moments of both struggle and success. Each 

CoP presented distinct challenges and interactions that shaped her planning and teaching. These 

CoPs influenced different facets of Suzie's overall mathematics-related teacher identity, 

including her mathematical identity and teacher identity. 

Despite their unique contributions, the CoPs shared commonalities in how Suzie learned to 

become an active participant within each community. Early in the school year, Suzie expressed 

her appreciation for the supportiveness of her grade team, describing them as “supportive and 

wonderful.” However, she also admitted, “I’m holding myself back because I’m too scared of 

saying the wrong thing.” Over time, her grade team consistently encouraged her to share her 

ideas, which helped Suzie feel she was “being heard”. By the end of the year, she reflected, “I’m 

not afraid to answer them, not afraid to contribute anymore… I know what I’m saying now… 

I’ve gotten a little bit more confidence speaking in the group.” 
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Suzie’s grade team also supported her during challenging moments. Early in the year, two 

parents questioned her teaching decisions, which she described as a personal attack that left her 

questioning herself. She realized, “how important communication is,” but felt unequipped to 

handle the situation. Her grade team guided her on how to respond effectively and 

professionally. This support enabled Suzie to improve her communication with parents and 

establish clearer, more confident interactions. 

Beyond addressing parent communication, Suzie’s grade team provided support in other 

areas, including classroom management and locating additional mathematics resources. At the 

beginning of the year, Suzie doubted her ability to teach math effectively, stating, “I feel like I’m 

going to do terrible.” However, as she explored new resources and adopted more intentional 

planning strategies, her confidence in delivering mathematics instruction grew. She remarked, 

“Seeing how they [the resources] teach and how they use verbiage has really helped me in my 

teaching… and it’s helped me be more confident in what I’m teaching.” This growing 

confidence was reflected in her students’ success: “Some kids who have really struggled with 

math get like a 100 on the quiz, and I’m just like, oh my goodness, that is just such a victory.” 

Two recurring themes emerged in Suzie’s stories: the need to adapt her communication 

across CoPs and the development of her confidence. This confidence manifested in multiple 

ways, including her ability to communicate, her mathematical understanding and instructional 

delivery, and her classroom decision-making. To illustrate how Suzie’s past experiences 

influenced her current teaching, molding her confidence and communication, I present a poem 

from my memos based one of our conversations and her recorded reflections (Navas, 2023). 

Instant dread  

I can’t teach this topic  

Memories of learning flood 

my head  

Respect 

Or learn.  

I need to get out of my 

The struggle and confusion  

linger with me 

I have to teach this  

concept  

I have to prepare 

I learn  

what to say  

I need to feel confident in  

what I teach   

Otherwise,  

My students won’t  

Trust 

but I’m better than I 

thought I would be. 
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head  

I prepare for the lesson 

My confidence builds, 

This concept isn’t that  

bad.  

My students won’t 

what vocabulary is   

important  

what should be 

emphasized for success. 

I may not be where I want 

to be in my teaching. 

 

Continue to grow  

Continue to learn 

Continue to reflect 

Continue to become 

An elementary 

mathematics teacher. 

Even though the interactions Suzie had with each CoPs were independent, the experiences 

she gained from one community influenced the way she participated and communicated in the 

other communities. The themes of communication and confidence could be seen within and 

between the different CoPs. For example, Suzie faced challenges communicating with the 

parents. Her grade team provided her with guidance on the language and tone to use while 

communicating with parents. When her grade team shared their knowledge, Suzie was able to 

communicate her expectations with confidence. This idea of the interconnectedness between and 

within the CoPs can be illustrated as interlinking gears that work together.  

Figure 1  

Gear Model of the Interconnectedness: A Mathematics-related Teacher Identity within CoPs  
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Conclusion 

Teacher identity is a growing area of interest, as it is shaped by many factors that impact both 

the individual teacher and their professional practice. Exploring these factors can further deepen 

our understanding of how identity influences teaching and learning. This information is valuable 

for the mathematics education community because it sheds light on an important topic that 

influences all mathematics teachers at all levels. It highlights the critical role CoPs play in the 

construction of a teacher’s mathematic-related teacher identity.  

Understanding the interplay of communication and confidence within CoPs can help districts 

create environments where teachers can develop positive mathematics-related teacher identities 

such as providing environments that encourage participation. Additionally, it underscores the 

challenges new teachers face as they navigate communication and participation within various 

CoPs. This participation plays a pivotal role in shaping teacher identity and influencing the kind 

of educator they become. Providing teacher candidates and new teachers with opportunities to 

learn how to express themselves and engage meaningfully with different CoPs can provide them 

with knowledge and confidence to become an active participant. To assist with this knowledge, 

preparation and teacher induction programs could integrate activities such as composing parent 

e-mails. Supporting teachers’ interactions with their new communities can positively impact their 

mathematics-related teacher identity leading to effective and equitable mathematics instruction. 
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