

Research Council on Mathematics Learning 43rd Annual Conference Shining a Light on Mathematics Learning

The Double Tree by Hilton Hotel Orlando, FL February 25–27, 2016

The Double Tree by Hilton Hotel

Shaded rooms will be utilized during the conference.

TABLE OF CONTENTS

DOUBLE TREE HOTEL MAP	i
WELCOME & SPECIAL THANKS	1
RCML OFFICERS	3
CONFERENCE OVERVIEW	4
Conference Events at a Glance	4
Committee Meetings at a Glance	4
INVITED LECTURES	5
Wilson Lecture: Mike Hynes	5
Founders Lecture: Alan Zollman	6
OVERVIEW OF SESSIONS	7
Friday Morning Sessions	7
Friday Afternoon Sessions	9
Saturday Morning Sessions	0
POSTER PRESENTATIONS	2
Thursday Afternoon	2
FULL SESSION DESCRIPTIONS	6
Friday Morning Sessions	6
Friday Afternoon Sessions	7
Saturday Morning Sessions	3
BUSINESS MEETING NOTES	2
PRESENTERS INDEX 44	4

Welcome to the 43^{rd} annual RCML Conference! We would like to thank all of the speaker, attendees and contributor of the conference. We hope you enjoy all of the sessions and receive valuable information that you can share with your colleagues. We welcome you to Orlando, Florida and the Double Tree by Hilton Hotel. We anticipate you will have a wonderful experience. Please let us know if we can assist you in any way. Enjoy the conference!

> Gabriel Matney Bowling Green State University

Nancy Cerezo Saint Leo University

Special Thanks!

<u>Program Layout</u>: A special thank you to Dr. Keith Emmert, Megan Schlosser, & Corrinne Sullivan for their hard work preparing the layout and contents of the RCML program booklet.

<u>Program Materials</u>: A special thank you to the College of Education and Human Development of Bowling Green State University for donating the materials for the program booklets.

Conference Bags: A special thank you to EAI Education for the donation of bags for the 2016 conference. They share:

"EAI Education appreciates the opportunity to be a sponsor for the Research Council in Mathematics Learning's Conference. To see our entire line of math resources for Grades K-12, please visit our website www.eaieducation.com"

<u>Conference Materials</u>: A special thank you to the Saint Leo University Education Department for the donation of trifold poster boards and resources for registration and the UCF College of Education and Human Performance for the use of projectors for presentations.

BGSU. College of Education and Human Development

Special Thanks Continued!

Proposal Reviewers: A special thank you to all of the proposal reviewers for reading and scoring the immense amount of proposals for this conference.

Kwaku Adu-Gyamfi	Danya Corkin	Elizabeth Howell	Carolyn Mitten	Tony Thompson
Frank Amankonah	Lina DeVaul	Keith Hubbard	Susie Morrissey	Sandra Trowell
Rachel Bachman	Juli Dixon	Taro Ito	Cynthia Orona	Catherine Ulrich
Nicole Bailey	Jennifer Eli	Sarah Ives	Carolyn Pinchback	Linda Venenciano
Mary Baker	Kimberly Erwin	Bill Jasper	Gorjana Popovic	Patrick Wachira
Rachel Bates	Brian Evans	Taylor Jensen	Roland Pourdavood	Douglas Whitaker
Jonathan Bostic	Eileen Faulkenberry	Elisabeth Johnston	Sarah Pratt	Jeremy Winters
Elayne Bowman	Ziv Feldman	Ed Keppelman	Adrienne Redmond-Sanago	Kay Wohlhuter
Sue Brown	Ardyth Foster	Dovie Kimmins	Thomas Roberts	Sean Yee
Kenneth Butler	Lucas Foster	Winnie Ko	Tena Roepke	Lanee Young
Traci Carter	Steve Foti	Dennis Kombe	Megan Schlosser	Vecihi Zambak
Tyrette Carter	Ryan Fox	Gerald Kulm	Carol Seaman	Fay Zenigami
Darlinda Cassel	Jodi Frost	Catherine Maiocra	Hannah Slovin	Alan Zollman
Nancy Cerezo	Rebecca Gault	Hope Marchionda	Kathy Smith	
Megan Che	Brian Gleason	Gabriel Matney	William Speer	
Lynn Columba	Maureen Grady	Bill McGalliard	Corrinne Sullivan	
Kansas Conrady	Laura Hauser	Gayle Millsaps	James Telese	

Proceedings Reviewers: A special thank you to all of the proceedings reviewers for reading and scoring the immense amount of proceedings for this conference and to Nicholas Wong for his work as the Editorial Assistant.

Amy Adkins	Kansas Conrady	Steven Greenstein	Karl Kosko	Amber Simpson
Melanie Autin	Danya Corkin	Leigh Haltiwanger	Angela Krebs	Tracy Thompson
Summer Bateiha	Lina DeVaul	Mary Harper	Lance Kruse	Mehmet Türegün
Jonathan Bostic	Bob Drake	Elizabeth Howell	Ruby Lynch-Arroyo	Juliana Utely
Justin Boyle	Adem Ekmekci	Sarah Ives	Hope Marchionda	Linda Venenciano
Kelley Buchheister	Brian Evans	Christa Jackson	Melfried Olson	Brittany Webre
Kenneth Butler	Tim Folger	William Jasper	Lindsay Prugh	Cong-Cong Xing
Joanne Caniglia	Lucas Foster	Elisabeth Johnston	Matt Roscoe	Fay Zenigami
Nancy Cerezo	Ryan Fox	Ed Keppelmann	Anu Sharma	
Lynn Columba	Kris Green	Dennis Kombe	Janet Shiver	

RCML Officers

President, 2015-2017

Juliana Utley Oklahoma State University Stillwater, OK 74078 juliana.utley@okstate.edu

Past President, 2015-2016

Mary Swarthout Sam Houston State University Huntsville, Texas 77341 swarthout@shsu.edu

Vice President for Conferences, 2014-2016

Eileen Faulkenberry Tarleton State University Stephenville, Texas efaulkenberry@tarleton.edu

Vice President for Publications

Sheryl A. Maxwell University of Memphis Memphis, TN 38152 smaxwell@memphis.edu

Webmaster

Ryan Speer Perrysburg, Ohio rspeer@sbcglobal.net

Secretary, 2015-2017

Sarah Pratt University of North Texas Denton, TX sarah.pratt@unt.edu

Treasurer, 2014-2016

Kerri Richardson University of North Carolina - Greensboro Greensboro, NC 27402 kerri_richardson@uncg.edu

Membership Chair (Appointed)

Sarah Pratt University of North Texas Denton, TX sarah.pratt@unt.edu

Investigations Editor (Appointed)

Drew Polly University of North Carolina - Greensboro Greensboro, NC 27402 investigationseditor@gmail.com

Intersections Editor

Jonathan Bostic Bowling Green State University Bowling Green, OH 43403 bosticj@bgsu.edu

Archivist

William R. Speer Director, UNLV Mathematics Learning Center University of Nevada Las Vegas Las Vegas, NV 89154-3001 william.speer@unlv.edu

Conference Proceedings Editor (Appointed)

Keith Adolphson Eastern Washington University Cheney, WA kadolphson@ewu.edu

Conference Proceedings Co-Editor (Appointed)

Travis Olson University of Nevada, Las Vegas Las Vegas, NV travis.olson@unlv.edu

Conference Committee

Travis Olson (2013-2016) University of Nevada, Las Vegas Las Vegas, NV travis.olson@unlv.edu

Kansas Conrady (2013-2016) University of Oklahoma Norman, OK kansas.conrady@ou.edu

Jonathan Bostic (2014-2017) Bowling Green State University Bowling Green, OH bosticj@bgsu.edu Sean Yee (2014-2017) University of South Carolina Columbia, SC seanpyee@gmail.com

Bill McGalliard (2015-2018) University of Central Missouri Warrensburg, MO mcgalliard@ucmo.edu

Hope Marchionda (2015-2018) Western Kentucky University Bowling Green, KY hope.marchionda@wku.edu

Conference Events at a Glance:

Thursday, February 25th

- 3:30 PM 8:30 PM Registration open outside the Tampa Bay Meeting Rooms
- 4:30 PM 5:30 PM The Research Poster Session in Tampa Bay 1
- 5:30 PM 6:30 PM The Wilson Lecture by Dr. Mike Hynes in Tampa Bay 1 & 2
- 6:30 PM 8:30 PM Welcome Reception with small appetizers in Tampa Bay 2 & 3

Friday, February 26th

- 7:30 AM 4:30 PM Registriation open in the Great Lakes Conference Center
- 8:00 AM 11:50 AM Breakout Sessions
- 12:00 PM 1:20 PM The RCML Business Luncheon in Ontario
- 1:30 PM 4:20 PM Breakout Sessions
- 4:30 PM 5:30 PM The Founders Lecture by Dr. Alan Zollman in Ontario

Saturday, February 27th

- 7:30 AM 12:00 PM Registriation open in the Great Lakes Conference Center
- $\bullet~8{:}00~\mathrm{AM}-11{:}50~\mathrm{AM}$ Breakout Sessions
- 12:00 PM 1:00 PM The Research Reflection Luncheon in Ontario

Committee Meetings at a Glance:

Friday, February 26th

- 11:00 AM 11:50 AM Past Presidents Meeting in Tampa Bay 1
- 11:00 AM 11:50 AM Publications Committee Meeting in Tampa Bay 2
- 11:00 AM 11:50 AM Conference Committee in Tampa Bay 3
- 1:30 PM 2:20 PM Memorial Scholarship Committee Meeting in Tampa Bay 3
- 2:30 PM 3:20 PM Nominations Committee Meeting in Tampa Bay 3

Wilson Lecture: Thursday, 5:30 PM Tampa Bay 1 & 2

Mike Hynes – Applications of a Virtual-Reality Classroom in Mathematics Education

Introduction by William R. Speer.

Abstract: Educators, particularly mathematics educators, have long been adopters of new pedagogies and teaching tools that have the potential to improve student and teacher performance in the content area of mathematics. The field of Modeling and Simulation has been an important part of training in aerospace, the military and industry; however, effective applications for education have not been available. For the past ten years a research team at the University of Central Florida has undertaken the task of developing a virtual-reality classroom, TeachLivE, and it has proven to be successful in changing teacher behaviors and show promise as a tool for students learning mathematics. The presentation will include audience interaction with TeachLivE as well as discussions of the uses of TeachLivE in mathematics education and education, in general.

Biography: Dr. Hynes attended Kenyon College and received a Bachelor of Science in Education from The Ohio State University. He taught mathematics and science in Akron, Ohio public schools for seven years. While teaching, he completed

a Master's degree in Mathematics Education at Kent State University. After completing his Ph.D. in Curriculum and Instruction at Kent State University, Dr. Hynes joined Florida Technological University in Orlando as an Assistant Professor in the Elementary Education Department. Dr. Hynes has been promoted twice in his tenure at the university, and now holds the rank of Professor. Dr. Hynes professional interests relate to mathematics education, science education, the use of technology in instruction, problem solving, and the improving the preparation of teachers. He has been very active in obtaining external funding for research. He has received over \$4,000,000 in funding in over his career. Dr. Hynes directed a joint project of NASA and the National Council of Teachers of Mathematics, Mission mathematics, that resulted in three books for teacher of mathematics, and directed the program associated with the NASA. Educator's Resource Center at Kennedy Space Center. Over the years, Dr. Hynes has been published in many journals related to mathematics education and has consulted on several basal mathematics series for elementary schools.

Pegasus Professor Emeritus Hynes is the founding director of the Lockheed Martin/UCF Academy for Mathematics and Science. This endowed program continues to prepare teachers of mathematics and science from elementary and middle schools for leadership roles in the improvement of mathematics and science teaching. Since 2004, his research and development activity has been focused on the development of a simulator for education known as TeachLivE. With colleagues Charles Hughes and Lisa Dieker, Hynes received \$1.5 in funding to accelerate the development of TeachLivE. The simulator is now licensed by UCF to Mursion, Inc. for commercialization.

Founders Lecture: Friday, 4:30 PM Ontario Alan Zollman – Mentoring of the Profession: The Legacy of RCML Introduction by Gabriel Matney.

Abstract: A few years ago I co-wrote an NCTM Yearbook chapter Identity Development: Critical Component for Learning in Mathematics. In this chapter we discussed the eight stages of psychosocial development of an infant to a mature adult, as described by developmental psychologist Erik Erikson. Stage seven is "generativity vs. stagnation" where, hopefully, adults nurture and support the next generation. Students, teachers, and researchers – we all need mentors that nurture and support us. RCML is where we look for supportive professional and personal relationships. RCML is also where, as mature adults, we reflect on a life with a sense of fulfillment. This is one of the foundational characteristics of the Research Council on Mathematics Learning; we are a mentoring organization. This is our legacy.

Biography: Dr. Alan Zollman is the role model for education. Dr. Zollman grew up on a small farm in rural Indiana, beginning his education in a two-room schoolhouse. His father only finished the 8th grade.

He served as a Peace Corps mathematics teacher in Ghana, West Africa, and later he as a middle school teacher. He continued his graduate work while teaching at University of Wyoming and Bowling Green State University. After finishing his Ph.D. at Indiana University, he taught at the University of Kentucky and then for 21 years in the Mathematical Sciences Department at Northern Illinois University. Since 2007, he has over 30 national and international articles and given over 30 national and international presentations. Dr. Zollman has served on the editorial board for RCML's Investigations in Mathematics Learning, and for Focus on Learning Problems in Mathematics, the forerunner of Investigations. On the Mathematics Genealogy Project, he has 5 "children" and 17 "grandchildren."

In leadership, Dr. Zollman was President of School Science and Mathematics Association, and Vice-President of the Research Council on Mathematics Learning. He has received several awards including Northern Illinois University's Excellence in Undergraduate Teaching Award – quite unusual for a professor in the mathematics department. Four years ago he was presented with SSMA's Outstanding Leadership Award. Last year, the Illinois Council of Teachers of Mathematics presented him with the Max Beberman Mathematics Education Award, the state's highest award for teaching, research and service – possibly because he left the state. Dr. Zollman is faculty emeritus at Northern Illinois University, but retirement was not something he understood. Currently, he is a secondary education faculty member at Indiana University Southeast, ironically near the southern Indiana farm he grew up on many years ago.

Overview of Friday Morning Sessions				
Room	8:00 - 8:50 AM	9:00 - 9:50 AM	10:00 - 10:50 AM	11:00 - 11:50 AM
Mishimu	Algebraic Reasoning: A Challenge for Pre-Service Elementary	Factors that Influence Teachers' Geometry Learning for Teaching Barbara Allen-Lyall	But Wait, What do I Say? Blogging to Build Confidence	Two Paths Converged: The Story of a Math Teacher and a Math Phobic Marcia Fletcher, Justin Fletcher, Darlinda Cassel
mungan	Teachers Carol Lucas, Adele Hanlon	Formative Assessment Strategies and Student Mathematics Achievement James Telese	Talking to Parents Kansas Conrady	
Okeechobee 1	Using Tutors to Teach Story-Driven Math Concepts to Students Carolyn Pinchback, Elson Bihm, Tori Francis Deschobee 1 The Nature of Prospective Middle School Teachers' Responsiveness Kadian Callahan Algeblocks to Image Integer and Binomial Multiplication	Using Apps to Develop Students' Understanding and Attitudes about		
Okeechobee 1Tori FrancisPreservice Teachers Self Efficacy for the Use of Graphing Tools in Math Ed Patrick Wachira, Xiongyi LiuSaOkeechobee 1Iori FrancisPreservice Teachers Self Efficacy for the Use of Graphing Tools in Math Ed Patrick Wachira, Xiongyi LiuSa	Sarah Pratt, Eloise Kuehnert, Colleen Eddy	Fractions Darlinda Cassel		
Okeechobee 2	Preservice Teachers' Ability to Invent Computational Strategies Sue Brown, Sandra Browning	Construction of Arguments in Middles School Digital Mathematics Curriculum Hagit Sela, Robert Wagner	Developing Teacher Autonomy and Understanding Through Inquiry & Discussion Patrick Brown, Hope Marchionda	Teacher Reflections on a Curricular Activity System Karina Hensberry, George Roy
Pensacola Bay	Assessing Students' Math Learning while Developing Equitable Practices Kerri Richardson, Tyrette Carter	Reading Together from Afar: Professional Development by Video Conference Ryan Fox	Developing a Peer Mentoring Culture among Mathematics	Examining Preservice Teachers' Culturally Relevant Teaching
	Bay Developing Mathematics Teacher Leaders: Oklahoma's Elementary Mathematics Stacy Reeder, Juliana Utley Nancy Cerezo, Deborah Banker	Gabriel Matney	Nickolaus Ortiz	
Superior	Examining Teacher Preparation Through the Lens of Transfer of Learning	Examining Teacher Preparation Through the Lens of Transfer of		Implementing the edTPA in Mathematics: "A Wonderful, Auful Idea"
	Melanie Fields, Eileen Faulkenberry	Preservice Teachers' Defining and Implementing Mathematical Discourse Lynn Columba	Sandra Trowell	Awjui Taea Tony Thompson, Kwaku Adu-Gyamfi, Maureen Grady
		Continued on nex	t page.	

-1

	Overview of Friday Morning Sessions				
Room	8:00 - 8:50 AM	9:00 - 9:50 AM	10:00 - 10:50 AM	11:00 - 11:50 AM	
Tampa Bay 1	Learning About Elementary Preservice Teachers From Their Observations Megan Burton	Developing Math Teacher Candidates' Abilities, Skills, and Understandings Alan Zollman	Tools for Success: Preparing PSTs to Effectively Differentiate	Past Presidents Meeting	
	Examining Prospective Elementary Grades Teachers' Mathematical Reasoning William McGalliard	Co-Teaching vs. Student Teaching to Develop Teacher Candidates in Education Alan Zollman	- Instruction Carolyn Mitten	RCML Past Presidents Only	
Tampa Bay 2	Exploring STEM Curriculum in an Integrated Physics and Algebra 2 Course Elayne Bowman, Clay Bowman	The Impact of Formative Assessment on Primary Students' Number Sense Skills Drew Polly	Developing Mathematical Content Knowledge for Teaching Using	Publications Committee Meeting RCML Publications	
	V-STEM: Visualizing Science, Technology, Engineering & Mathematics Mary Baker	Mathematics in the CHARMED World: Teaching through Robotics Megan Nickels	Modeling Tasks Farshid Safi	Committee Only	
Tampa Bay 3	Mathematics and Science Teachers' Perspectives on History and Culture Roland Pourdavood	Understanding the Motivation to Study Mathematics	Improving Online Students' Learning in Statistics Using Curricular Supports	Conference Committee Meeting RCML Conference	
	Full-Time Interns: A New Paradigm For Teacher Education? Sheila Brintnall, Dena Walker	Jenny Peters	Taylor Jensen, Jeffrey Sadler	Committee Only	

Friday Morning Sessions

	Overview of Friday Afternoon Sessions				
Room	1:30 - 2:20 PM	2:30 - 3:20 PM	3:30-4:20 PM		
Michigan	Facilitating Mathematical Conversations in Diverse Classrooms: A Case Study Mercedes Sotillo-Turner	An Alternative Route to Bypass Developmental Mathematics Linda Venenciano, Fay Zenigami	Mindset and Mathematics Eileen Faulkenberry		
Okeechobee 1	Asking the Right Questions – Young Children's Perception of Number Pat Jordan	Identifying and Reducing Mathematics Anxiety in Preservice Teachers Gina Gresham	From Manipulatives to Social Justice: An Ecological Model for Relatedness Kenneth Butler		
Okeechobee 2	Identifying Barriers to Pre-Service Teachers' Mathematical Confidence Ryan Fox, William McGalliard	Mathematics Course Pathways: Insights and Experiences of a Redesign Rachel Bates	Implementing Reform Initiatives: A Case Study of a High School Teacher Kwaku Adu-Gyamfi, Tony Thompson		
Pensacola Bay	Changing the Mathematics Teaching Culture to Improve Instruction Bob Drake, Kathleen Hulgin	Using Measurement to Develop Proportional Reasoning in a Cultural Context Melfried Olson, Judith Olson	<i>iPad Apps for Early Math Learning</i> Amy Adkins, Lina DeVaul, Taro Ito		
Superior		The Effectiveness of Professional Development: Retention of Teacher Content Makini Campbell-Sutherland	Publish in the Investigations Journal! Drew Polly		
Tampa Bay 1	Integrating Algebra and Literature in a Mathematics Education Course Ann Wheeler, Carole Hayata	Breaking or Perpetuating Perceived Norms in Content Courses for PSETs? Kansas Conrady	Mathematics Knowledge for Secondary Teaching? Bob Mann, Anita Reid		
Tampa Bay 2	Student Understanding of Traditional and Simulation-based Inference Methods Catherine Case	The Development of Exemplary Statistics Teachers' Professional Identities Douglas Whitaker	The Elephant in the Room: Students' Mathematics-Related Beliefs Cathrine Maiorca		
Tampa Bay 3	Memorial Scholarship Committee Meeting RCML Memorial Scholarship Committee Only	Nominations Committee Meeting RCML Nominations Committee Only			

Shining a Light on Mathematics Learning

 $\mathbf{9}$

Overview of Saturday Morning Sessions				
Room	8:00 - 8:50 AM	9:00 - 9:50 AM	10:00 - 10:50 AM	11:00 - 11:50 AM
Michigan	Let's Get Graphic! Learning About Student Understanding With Frayer Models Mary Swarthout, Valerie Sharon	Role of Support Structure in the Success of Developmental Math Programs Elizabeth Howell	Students' Conceptions of Negative Integers Karen Zwanch	Improve Elementary Teachers' Understanding of Base-ten Place Value System Lina DeVaul, Amy Adkins, Carryn Warren
Okeechobee 1	Beliefs about Social Justice among Elementary Mathematics Teachers Brian Evans	Pre-service Teachers' Implementation of Physical and Virtual Manipulatives Enrique Ortiz, Heidi Eisenreich, Laura Tapp	Is Change Possible? Practicum as a Way to View Math Ability Differently Carolyn Mitten	Colligation and Unit Coordination in Mathematical Argumentative Writing Karl Kosko, Rashmi Singh
Okeechobee 2	Our Emporium Model in Precalculus: Another Year of Learning and Growing Tracey Howell, Carol Seaman	Blending Divergent Approaches to Learning and Teaching Algebra—A Case Study Fay Zenigami, Linda Venenciano	A Latent Class Analysis of Algebra I Students in Florida Thomasenia Adams	Pre-service Teachers' Acceptance of Number Concepts Instruction in Base 8 Katie Harshman, Heidi Eisenreich
Pensacola Bay	Math Dance: A Study of Effectiveness Rachel Bachman, Erik Stern	Diagnostic Case Study: Similarities between Mathematics and Reading Nichole Smith, Kimberly Erwin, Tyrette Carter	Exploring Mental Models of "Doing Math" through Drawings Ben Wescoatt	Draw Yourself Doing Mathematics: Assessing a Mathematics and Dance Class Rachel Bachman
Superior	Association between Students' Strategy Use and their Math Achievement Nesrin Sahin, Juli Dixon		Purposefully Planning for Mathematics Discourse Andria Disney, David Erickson	Academic Rigor in Single-sex and Coeducational Middle Grades Math Classes Dennis Kombe, Megan Che
Tompo Por 1	Helping Student Interns Think Critically About Their Teaching Lessons Cynthia Orona	Reform-Statistics in the Middle Grades Natasha Gerstenschlager	First Look! A Validation Study of	Instructional Practices Related to
татра Бау т	What Went Wrong: Pre-Service Teachers' Reflections on Lesson Planning Glenn Phillips	Deepening Statistical Content Knowledge for the Common Core Jacqueline Wroughton, Brooke Buckley	Jonathan Bostic, Gabriel Matney	Maureen Grady
Tampa Bay 2	Parent Workshops on 2nd, 3rd, and 4th Grade Whole Number Operation Tasks Heidi Eisenreich	Tinkerplots and K-8 Mathematics Education Lucas Foster	Examining an Instrument Designed to Measure the Quality of Instruction Kristopher Childs, Juli Dixon, Makini Cambell-Sutherland, Haiyan Bai	
		Continued on nex	t page.	

Overview of Saturday Morning Sessions				
Room	8:00 - 8:50 AM	9:00 - 9:50 AM	10:00 - 10:50 AM	11:00 - 11:50 AM
Tampa Bay 3	Using Technology to Engage Students in Introductory Statistics Topics Hope Marchionda, Melanie Autin	Guided Reinvention of Sequence Convergence: A Study of Two Students Beth Cory, Ayse Ozturk		
	The Challenge of College Algebra: Year Two Jodi Frost	Framework for Assessing College Students' Duality Conception of Infinity Grace Babarinsa-Ochiedike		

Shining a Light on Mathematics Learning

Time: 4:30-5:30 PM	Room: Tampa Bay 1
Teacher Candidates' Burning Questions Collected from Poster	Presentations
Amy Adkins U	niversity of Nevada, Las Vegas
This research seeks to stimulate the mathematics education community by summarizing	ng teacher candidates' burning
questions about the teaching and learning of math education. Using a poster presentation	n, teacher candidates identified
these questions and their rationale for questions. The burning question posters provide	d a summary of what burning
question was explored and synthesized information from journal citations to arrive at a	conclusion for the topic being
investigated. The researcher collected fifty-five posters over a two year period. Qualitative	e methods were used to analyze
the data in which emerging themes were identified. This research will generate conversat	tion about topics that teachers
are interested in learning in elementary math methods classes. This research seeks to co	pordinate and generate themes
that can be discussed in further depth with teachers.	
Time: 4:30-5:30 PM	Room: Tampa Bay 1

Number and	Operations	Knowledge:	A K-5	Endorsement	Perspective

Gregory Chamblee

Georgia Southern University This session will discuss numbers and operations content knowledge of K-5 teachers enrolled in a K-5 mathematics endorsement professional development initiative. Content pre-/post- test data will be discussed. Implications of the data will be discussed.

Time: 4:30-5:30 PM	Room: Tampa Bay 1
Math Teachers' Knowledge and Self-efficacy for Instructional T	echnology Use
Denve Coultin	Dico University

Danya Corkin

Rice University

It is unequivocally believed that emerging instructional technologies have the potential to bolster mathematics learning and instruction at urban schools (e.g., International Society for Technology in Education, 2007; National Council of Teachers of Math, 2008). With appropriate use, instructional technology can help teachers enact their teaching-related tasks more effectively, and in turn, facilitate students' learning of math (Mishra & Koehler, 2006). The main aims of this study are to investigate the extent to which a) teachers' self-efficacy for integrating technology (TI) in the classroom and their technological pedagogical content knowledge (TPACK) relate to their frequency of use of technology in the mathematics classroom, and b) perceptions of professional development about instructional technology in the classroom predict changes in teachers' TI self-efficacy and TPACK. We surveyed 80 K-12 math teachers from urban school districts before and after a 3-week summer PD program. Results showed that TI self-efficacy and TPACK significantly correlated to frequency of technology usage. Regression analyses indicated that teachers' perception of instruction about the use of technology through PD was a significant predictor of their TPACK but was not a statistically significant predictor of their TI self-efficacy. This study has implications for teacher preparation and PD programs related to training teachers in instructional technology for math teaching.

Time: 4:30-5:30 PM

Mathematics Trail at Eastern Kentucky University

Room: Tampa Bay 1

Kari Everett Eastern Kentucky University How do you get students to do mathematics without them realizing they are doing mathematics? A Math Trail! A math trail is a predetermined course in an environment where students examine real-world mathematics. The math trail would bring local elementary students to campus to explore while applying their mathematical knowledge to real-world situations. Pre-service teachers enrolled in a content mathematics course develop the problems for the math trail as part of a project for their class. The problems are based on various buildings on campus and the Kentucky Mathematics Curriculum standards for elementary grade-level mathematics. The project brings the community to campus and engages students in learning more about various places on campus thru mathematics. The pre-service teachers advance their knowledge about writing real-world problems at appropriate grade levels for elementary students. Through the project, the pre-service teachers are able to use their creative side to develop the problems that are informative and provide interesting information to elementary students. All students are able to give their feedback thru reflections about the project and math trail.

Time: 4:30-5:30 PM		Room: Tampa Bay 1
	Exploring Validity Evidence for the PSM7 and PSM8	
Tim Folger	Bow	ling Green State University

Jonathan BosticBowling Green State UniversityThis poster presentation aims to share key features from evaluation of seventh- and eighth-grade students' mathematical
problem solving as well as their feelings towards to two classroom-based problem-solving measures (PSM7 and PSM8).Evidence related to content and consequences of testing validity was explored through cognitive interviews. Results
from analysis of these data sources were further explored with implications shared for using the PSM7 and PSM8.

Time: 4:30-5:30 PM	Room: Tampa Bay 1
Exploring Preservice and Inservice Educators Sensemaking of the SMPs	
Lance Kruse	Bowling Green State University
Megan Schlosser	Bowling Green State University
Jonathan Bostic	Bowling Green State University
The purpose of this poster is to share findings of undergraduate prese	ervice mathematics teachers' and inservice math-
	$(\Omega M D) (\Omega Q) (\Omega$

ematics teachers' understanding of the Standards for Mathematical Practice (SMPs) (Common Core State Standards Initiative [CCSSI], 2010). The SMPs express what it means to do mathematics and "therefore permeate mathematics instruction across grade levels and content areas" (Koestler, Felton, Bieda, Otten, 2013, p.ix). Our poster presentation shares preservice and inservice teachers' ideas about observable factors related to the SMPs, connects these factors to the SMP look-for protocol (Bostic, Matney, & Sondergeld, 2016), and offers validity evidence related to the protocol.

Time: 4:30-5:30 PM	Room: Tampa Bay 1
Structural Connections of Base-10 Numbers and Binomials Using an Area Model	
Eloise Kuehnert	University of North Texas
Sarah Pratt	University of North Texas
Our research reveals that teachers struggle to express what is a binomial and	the structural foundations involving them.
This study shows a series of tasks using the distributive property to connect	ct area model structures involving base-10
numbers and binomials. Initial results indicate a need for additional tasks w	within the series to scaffold teacher learning
trajectories. Conversations will focus on the mathematical concepts and futur	e implications for professional development.
Hands-on activities will be available for participants to engage in the mathe	matics.

Time: 4:30-5:30 PM	Room: Tampa Bay 1
Attitudes about the Use of Digital Games among Pre-service Teachers	
Xiongyi Liu	Cleveland State University
Patrick Wachira	Cleveland State University
The purpose of the present study is to explore the attitudes among pre-service teachers a	about the use of digital games
in math teaching and learning. Teacher education students at a Midwestern university	will be administered a survey
with questions on their perceived usefulness of digital games in math education, self effic	acy for using digital games in
math education, and motivation for learning about educational uses of digital games in math classrooms. Data from	
the survey will be analyzed to describe the participants' attitudes about digital games.	Preliminary analyses will also
be conducted to examine whether such attitudes are related to the participants' age, gene	der, or major.
be conducted to examine whether such attitudes are related to the participants' age, gend	der, or major.

Time: 4:30-5:30 PM	Room: Tampa Bay 1
Designing and Teaching Courses to Satisfy K-8 Certifications	
Winifred Mallam	Texas Woman's University
This session focuses on how a mathematics department revised their mathematics	courses to reflect the mathematics
that pre-service teachers preparing to be certified for kindergarten to grade 8 need.	We will review the structure of the
courses offered and how they address state and national mathematics standards for	teaching mathematics.

Room: Tampa Bay 1

Time: 4:30-5:30 PM

Pre-Service Teachers' Dispositions Towards Mathematics

Cynthia Orona

University of Arkansas Elementary pre-service teachers are preparing for future careers in classrooms where teaching math will likely be a part of their teaching assignment. How do these pre-service teachers view mathematics? As with all people, responses lie on a continuum with a range from positive experiences to negative experiences. Based upon prior experience, people conjure thoughts and feelings when they hear the word mathematics thus framing a distinct disposition towards the subject of mathematics. In particular a teacher's disposition can be influential on their students' dispositions towards mathematics, especially in the elementary grades when students are building a mathematical foundation for future learning. The mathematical foundation itself can lead to a range of mathematical dispositions depending on experiences the student has with mathematics. Elementary pre-service teachers were asked to respond to the following question at the beginning of a mathematics methods course: What do you think of when you hear the word mathematics? Responses varied and provided an initial glimpse into their dispositions towards mathematics. These responses were cross-referenced with autobiographies that the students wrote about their mathematical experiences, beliefs about learning mathematics, and thoughts on qualities they feel the ideal mathematics teacher should embody. This presentation will discuss the dispositions that these students have towards mathematics.

Time: 4:30-5:30 PM	Room: Tampa Bay 1
Increasing Student Engagement in Math with Online Games	
Diana Perdue	University of Trinidad & Tobago
Do you have students who are present in body but absent in every other	sense? Do your students sometimes resemble
zombies rather than interested, engaged people? Technology can help!	In this best practices session, I will present
three specific strategies for increasing student engagement in your math c	lasses by using online games. Gamification is
not a new concept, but its application to education and mainstream classe	es is in a rather nascent developmental stage.
Research is clear: students (well, all of us really) are more interested in least	rning when it doesn't feel like drudgery, when
it is fun, and when there is a significant degree of control and autonomy	. Game designers have spent a great deal of
time figuring out the "sweet spot" between hard fun and an almost addict	tive level of engagement. In my session, we'll
discuss aspects of this that can be easily applied to the typical math class	room. Come ready to play and learn!

Time: 4:30-5:30 PMRoom: Tampa Bay 1	
One on One: What I Learned from Teaching in a Specialized Private School	
Glenn Phillips Texas A&M University	
For one semester, I taught seven students at a private, one-to-one school in the south. The school catered to home-	
schooled students, students with learning differences, students with emotional or physical challenges, and students whose	
extracurriculars kept them from traditional schools. Having taught in public schools (high school) as well as college,	
I thought I would be well-prepared for the stripped-down classroom. I was wrong. This presentation uses an auto-	
ethnographic lens to explore my semester. I was the teacher of record for geometry, algebra II, pre-calculus, and finite	
mathematics. In addition I did after school tutoring for calculus, pre-algebra, algebra, and trigonometry. The experience	
taught me that many of the challenges teachers associate with larger classrooms (behavior, disassociation, staying on	
track, and assessment) are still prevalent in a one-on-one classroom. However, other lessons learned (student-pacing,	
student-led curriculum, and attention to unique student needs) helped redefine how I teach larger classrooms.	

Time: 4:30-5:30 PM Room: Tampa Bay 1 Secondary Mathematics Teacher's Beliefs and Practices and NCTM Principles **Cleveland State University** Roland Pourdavood This qualitative and descriptive case study is part of a larger study focusing on two Introduction to Calculus classes taught by the same teacher. The study is grounded in constructivist inquiry and is context specific. Data sources include transcripts of audio tape recordings from one-on-one interviews with the participating teacher, from classroom observations, students' written responses to various non-routine problems, and the field notes of the researchers. The study does not intend to generalize the findings to all settings. Rather, it intends to share the ideas, experiences, and practices of the classroom teacher in the hope that readers may identify with the research context and apply the findings to their own particular settings. The focus of this paper is to describe one secondary mathematics teacher's evolving beliefs and practices relative to the NCTM six principles. In addition, the paper discusses the implication for teacher education, curriculum change, and school transformation.

Time: 4:30-5:30 PM	Boom: Tampa Bay 1
	Room. Tampa Day 1
Impacts of the Launch of Professional Development on Teachers' Instruction	
Corrinne Sullivan	Bowling Green State University
Gabriel Matney	Bowling Green State University
This poster presentation shares the teaching instructional strategies and ma	thematical concepts shared during a "two
day", thirteen hour, professional development workshop for the sixth throu	igh eighth grade teachers of a district in
Northern Ohio. Observations from exit ticket reflections during the profession	al development and videos of the teachers'
instruction are then reported. An analysis of these observations versus the	elements and aspects of the professional
development will determine whether this thirteen hour professional development	nent workshop impacted the teachers' in-
structional techniques between one and two months after the workshop.	

Time: 8:00-8:50 AM Room: Michigan		
or Pre-Service Elementary Teachers		
Carol Lucas University of Central Oklahoma		
Jacksonville University		
lents' mathematics education yet many elementary teachers		
ation will provide examples of making algebraic connections		
been used with pre-service elementary teachers. Results of		
e importance of algebraic reasoning as well as their algebra		
Room: Ukeechobee 1		
How Do Struggling Third Graders Make Sense of		
Fraction Concepts:		
Rebecca Gault, University of Central Florida		
Tori Francis, University of Central Arkansas		
Although many researchers in mathematics education have		
studied the conceptual thinking and reasoning of elemen-		
tary mathematics students and the need for conceptually		
based instruction prior to instruction in procedures, stud-		
ies that have specifically addressed the thinking or in-		
structional needs of students who struggle in mathemat-		
ics have been less common. At the same time, research in		
will consist of live modeling and didactic training with a exceptional education has tended to focus on procedural		
PowerPoint presentation with a voice-over narrator), and interventions and quantitative results. Although some re-		
searchers have sought to understand the sense-making pro-		
cess of struggling students in mathematics, few studies have		
attempted to qualitatively document how struggling third		

reading/activities with the students. The speaker will also share her observations of the activities, games, and play that the children were engaged in during this study. Furthermore, special attention will be noted on the effects of using an illustrated story-book, Captain Invincibles and the Space Shapes by S. Murphy, Pre and post results will be presented.

Time: 8:00-8:50 AM	Room: Okeechobee 2
Preservice Teachers' Ability to Invent Computational Strategies	
Sue Brown Unit	iversity of Houston, Clear Lake
Sandra Browning Uni	iversity of Houston, Clear Lake
The purpose of this session is to share the results of a study examining preservice teachers'	ability to invent computational
strategies. Participants in the study were 57 preservice teachers pursuing a Bachelor's I	Degree in Education with early
childhood through grade 6 initial certification. The candidates were enrolled in Mathematics Methods courses taught	
by the speakers. On the second day of class, preservice teachers were given a pre-asses	sment consisting of four multi-
digit computations, one for each of the operations. Formative assessments with similar	ar problems were administered
on four different days in the middle of the semester. A final summative assessment using the same problems as the	
pre-assessment was given on the last day of the course. Data indicate that preservice teachers have minimal skills in	
creating invented strategies. The percentage of preservice teachers who were able to s	solve a computational problem
using invented strategies on the third assessment varied from 7% for multiplication to 9%	3% for subtraction.

Time: 8:00-8:50 AM	Room: Pensacola Bay
Assessing Students' Math Learning while Develop-	Developing Mathematics Teacher Leaders: Okla-
ing Equitable Practices	homa's Elementary Mathematics
Kerri Richardson, University of North Carolina at Greens-	Stear Pooder University of Oklahoma
boro	Stacy Reeder, University of Oklandina
Tyrette Carter, North Carolina A&T State University	Juliana Utley, Oklahoma State University
Our research focuses on a growth model of how teachers	The mathematics education programs at two large state
developed their ability to assess student learning as a re-	research universities embarked on implementing an Ele-
sult of their growth in creating equitable instruction for	mentary Mathematics Specialist program with the goal of
students in informal school settings within the context of	developing mathematics teacher leaders and increasing the
algebraic reasoning. We describe data collected as part of a	mathematical content and pedagogic knowledge of elemen-
study focusing on the mathematical reasoning of students	tary teachers. The program development and coursework
in grades, 3, 4, and 5. Our research context took place	were included as part of an ongoing joint research project.
in six elementary schools located in both rural and urban	Research efforts and findings related to the development of
settings. We describe how teachers began their instruc-	teacher leaders as a part of these programs will be shared.
tion and over time, how they developed their assessment	Hallmark features of the program and coursework that sig-
strategies to ensure that students obtained access to alge-	nificantly impacted the development of teacher leadership
braic reasoning, mathematical content, and discourse.	will be presented.

Time: 8:00-8:50 AM	Room: Superior
Examining Teacher Preparation Through the Lens of Transfer of Learning	
Melanie Fields	Texas A&M University-Commerce
Eileen Faulkenberry	Tarleton State University
The instructional practices of six graduates from a secondary	math and science preparation program were examined.
Teachers were in either their first or second year of teaching.	Haskell (2000) outlined eleven principles of transfer of
learning principles, which were employed to examine the levels of	f transfer demonstrated from preparation to practice. The
Concerns Based Adoption Model (CBAM) was used for data col	lection; all three components were used to triangulate the
findings. Assumptions were generated through the use of the pr	ogram's own teacher observation protocol, the program's
own replication manual, and alignment with Haskell's eleven pr	inciples. The findings from this study demonstrated that
when the principles of transfer were applied, initial levels of the	cansfer were observed. If a teacher educator wants their
future teachers to transfer what they learned about teaching to	the classroom, we must first understand what facilitates
transfer and purposefully incorporate those principles. We will	explore the principles, the findings from the study, and
ultimately the implications of the findings.	

Time: 8:00-8:50 AM	Room: Tampa Bay 1
Learning About Elementary Preservice Teachers	Examining Prospective Elementary Grades Teach-
From Their Observations	ers' Mathematical Reasoning
Megan Burton, Auburn University	William McGalliard, University of Central Missouri
This study examined elementary prospective teachers' pro-	This mixed methods study investigated undergraduate pre-
fessional noticing of the mathematical thinking of students.	service elementary grades teachers' mathematical reason-
Prospective teachers observed students in multiple settings	ing. I examined two aspects of mathematical reasoning,
and documented their noticings in a journal, through in-	strategy and generalization and sought to understand the
terviews, with student artifacts, and through reflections of	relationship between them through analyses of one hundred
their lessons. The analysis of these data sources provide a	and fifty students' strategies for enumerating and their gen-
snapshot into their perceptions. Insight into the pedagogi-	eralizations of these strategies in the context of combina-
cal needs of prospective teachers to support their ability to	torics tasks. Findings suggest little relation between the
effectively attend, assess, respond to the needs of all stu-	teachers' enumeration strategies and their generalizations.
dents are found. Comparisons are made to the noticings	Many teacher candidates did not draw upon the strate-
that occurred while prospective teachers were instructing	gies used in their explorations of the tasks when generaliz-
students versus while observing mathematics lesson. Find-	ing, often recalling a numeric formula that was unrelated
ings provide insight into the need to support prospective	with their enumeration strategy. These results suggest that
teachers as they move from observers to teachers.	teacher educators should encourage teacher candidates to
	make sense of the mathematics that they learn so that they
	in turn can help their future students.

Time: 8:00-8:50 AM	Room: Tampa Bay 2
Exploring STEM Curriculum in an Integrated Physics and Algebra 2 Course	V-STEM: Visualizing Science, Technology, Engineering & Mathematics
Elayne Bowman, Oklahoma Christian University Clay Bowman, Mustang High School	Mary Baker, University of North Dakota
Normally a prerequisite to Physics, Algebra 2 can often be a tedious course for high school sophomores to master. However, to be able to complete the pre-engineering set of courses, including the Advanced Placement Calculus and Physics series, both Physics and Algebra 2 must be com- pleted by the end of students' sophomore year. Two sec- ondary teachers from a large high school forged a team and a plan to integrate and teach the two courses during one fifty minute class period during the 2015-2016 school year. Beginning with the teachers' conceptualization of what the course would like, how the teaching would be shared, and what assessments might look like, this study follows the process of forging new paths in STEM curriculum in the secondary classroom.	Visualizing STEM: What does that mean? Motivating stu- dents to learn mathematics and science and to be excited about how they can and will be using this knowledge in their future careers is often a complex problem teachers are confronted with on a day-to-day basis. In this session, we will share how one group of university faculty inter- acted with middle school science and mathematics teachers and students in a Mathematics and Science Partnerships Grant that was designed to motivate students to engage in and enjoy more mathematics and science lessons that are related to the topic of solar energy. From building solar ovens and houses to building a solar city, students inter- acted with scientists and mathematicians from the univer- sity as they explored how the problems associated with American's energy generation and consumption could pos-
	sibly be addressed through the use of solar energy. Addi- tionally, students and teachers interaction with university faculty also exposed them to the exciting career opportu-
	nities that exist in STEM-related careers. In this session we shall share, not only the curriculum developed, but also the student impact results of our study. Visualizing STEM: Seeing is believing!

Time: 8:00-8:50 AM	Room: Tampa Bay 3
Mathematics and Science Teachers' Perspectives	Full-Time Interns: A New Paradigm For Teacher
on History and Culture	Education?
	Sheila Brintnall, Northwestern Oklahoma State University
Roland Pourdavood, Cleveland State University	Dena Walker, Northwestern Oklahoma State University
This presentation focuses on five years of data collection	The current teacher shortage is forcing more school systems
and data analysis of secondary mathematics and science	to hire alternatively certified teachers and look to colleges
teachers' perspectives on the importance of history and cul-	and universities to find viable candidates to fill classroom
ture for teaching and learning as they took a course with	positions. This will be a presentation with an open dis-
me. Data collection includes the researcher's field notes,	cussion concerning the placement of interns into full-time
classroom discussions, participating teachers' writing and	positions before fully completing an accredited education
presentations. The findings of the study suggest that al-	program.
though most of the participating teachers acknowledged	
the importance of teaching and learning mathematics and	
science from historical and cultural perspectives, actual-	
ization of their beliefs and their classroom practices faces	
many challenges and problems such as policy, politics, on-	
tological, epistemological, and methodological issues.	

Time: 9:00-9:50 AM	Room: Michigan
Factors that Influence Teachers' Geometry Learn-	Formative Assessment Strategies and Student
ing for Teaching	Mathematics Achievement
Barbara Allen-Lyall, Manhattanville College	James Telese, University of Texas, Rio Grande Valley
This study examined cognitive and affective factors that in-	This session reports on a NAEP database analysis. The
fluence teachers' geometry learning for teaching. Although	study examined the relationship between formative as-
teachers of all aged students are expected to possess both	sessment strategies and eight grade students' mathemat-
pure geometry content knowledge and pedagogical content	ics achievement using the NAEP mathematics composite
knowledge necessary for teaching, research reveals that few	scale score as the dependent variable. Moreover, the perfor-
experience sufficient instruction or gain adequate under-	mance of English Language Learners was compared to non-
standing of the geometry they must be able to model and	English Language. The results indicated that performance
discuss with their students. In this study, a multi-measure	for English Language Learners was lower, and statistically
approach was used to investigate potential relationships be-	significant, than for non-English Language Learners.
tween teachers' spatial ability (specifically mental rotation	
and spatial visualization), attitudes about geometry, and	
geometry content learning. Participants were students in	
two sections of a geometry course in a non-licensure college	
mathematics education program. The participants were	
also teachers in underperforming schools where improving	
student mathematics achievement is essential. Findings	
revealed geometry attitudes predicting geometry content	
pretest scores and spatial ability predicting growth of ge-	
ometry understanding during the study period. Impor-	
tantly, results suggest addressing both affective and cogni-	
tive factors from the earliest stages of geometry learning.	

Time: 9:00-9:50 AM	Room: Okeechobee 1	
The Nature of Prospective Middle School Teachers'	tive Middle School Teachers' Preservice Teachers Self Efficacy for the Use of	
Responsiveness	Graphing Tools in Math Ed	
Valian Callahan Vanagan Stata University	Patrick Wachira, Cleveland State University	
Kadian Calianan, Kennesaw State University	Xiongyi Liu, Cleveland State University	
This session shares information on a research study that	The purpose of the present study is to examine self-efficacy	
is currently in the data analysis phase. The study exam-	for the use of graphing technology when used in the context	
ines the nature of how prospective middle school teachers	of learning and assessment among middle school pre-service	
(PMSTs) listened responsively to their peers in an under-	teachers. Data sources include survey, interviews with se-	
graduate mathematics content course. In particular, the	lected teachers, classroom observations, and student writ-	
study is concerned with describing the nature of prospec-	ten responses to problems solved with the use of graphing	
tive teachers' listening responsiveness to their peers' math-	calculators. It is hypothesized that pre-service teachers	
ematical ideas with regards to the level and function of	will show improved self-efficacy for using graphing tools in	
their responses. Preliminary results suggest that prospec-	math teaching.	
tive teachers were primarily operating in the responsive		
listening phase as they listened carefully to and gave se-		
rious consideration to others' mathematical thinking, and		
worked hard to actively support and extend that thinking		
in meaningful ways that helped to move the mathematical		
goals of the lesson forward.		

Time: 9:00-9:50 AM	Room: Okeechobee 2	
Construction of Arguments in Middles School Digital Mathematics Curriculum		
Hagit Sela	University of Florida, College of Education	
Robert Wagner	University of Florida, College of Education	
SunBay Math is an innovative mathematics curriculum integrated with software and pedagogy focused on enhancing		
understanding. It is designed to help students understand middle school challenging math concepts. The technology-		
based activities use dynamic representations intended to stimulate discussions around these concepts. The software		
allows manipulating the objects and provides feedback by displaying immediate changes that occur. These activities		
encourage students to predict a result before checking it online. As students work on the software in small groups,		
encountering multiple predictions by different members of the group motivates students to make arguments to support		
their prediction, and critique explanations of peers. SunBay is implemented in 30 middle schools in South Florida.		
It is based on SimCalc, a predecessor curriculum that was implemented previously and focused on Algebra. Research		
on SimCalc demonstrated significant impact on student le	earning of core algebra concepts including both procedural	
and conceptual problems. These findings raise a need to	investigate the nature of the processes that take place in	
these classrooms, and the nature of reasoning used, in particular. This research aims at looking closely at five SunBay		
math classes in order to characterize the nature of explanations and arguments constructed, while comparing them to		
explanations and arguments constructed in five non-SunBa	y math classes learning the same concepts.	
Time, 0.00, 0.50 AM Depressels Depressels		
Reading Together from Afer: Professional Devel	Online Interactive Math: Does it Enhance Pre-	
opment by Video Conference	service Teachers' Knowledge?	
	Never Comer Crist Lee University	
Ryan Fox, Belmont University	Nancy Cerezo, Saint Leo University	
How do too show advoctors support new convice and partice	Deborah Banker, Texas Southmost College	
How do teacher educators support pre-service and novice	Vising the online interactive math game website, Plathum	
reachers outside of—or in addition to—the university class-	their off each of moth drilla. Students more within the weth	
room setting: Previous research suggested implementing their emcacy of math skills. Students work within the math		
methods of asynchronous communication. However, what	website utilizing the games feature as well as the teacher	

How do teacher educators support pre-service and novice	Using the online interactive math game website, Platinum
teachers outside of—or in addition to—the university class-	Math, pre-service elementary teachers provide feedback on
room setting? Previous research suggested implementing	their efficacy of math skills. Students work within the math
methods of asynchronous communication. However, what	website utilizing the games feature as well as the teacher
methods are available to teachers and educators when the	resource pages to enhance their math knowledge as well as
teacher educator and the novice teacher are available simul-	build their efficacy towards designing lessons. Analysis of
taneously but unable to meet at the same location? This	survey results will be shared.
session will report on the findings of a self-study involving a	
novice teacher of mathematics and a junior university fac-	
ulty member. We are both interested in learning how we	
grow professionally in our respective roles in terms of both	
content and pedagogical knowledge bases. The professional	
development experience associated with the self-study is a	
discussion on a set of readings within mathematics edu-	
cation literature. We used video conference technology to	
engage in fruitful discussions on teaching mathematics and	
teaching future mathematics teachers. In this presentation,	
we will share how interactions by video encouraged each of	
us to integrate our selected readings with our growing base	
of practical experiences in order to strengthen our respec-	
tive mathematical knowledge for teaching. We encourage	
session participants to share their insights in working with	
pre-service and novice teachers in a distance education set-	
ting or the viability of incorporating our work in their own	
mathematics teacher preparation programs.	

Time: 9:00-9:50 AM Room: Superio	
An Investigation into First Grade Students' Math-	Preservice Teachers' Defining and Implementing
ematical Discourse	Mathematical Discourse
An Investigation into First Grade Students' Mathematical Discourse Seanyelle Yagi, University of Hawaii at Manoa Although a large body of research looking at aspects of mathematical discourse exists in the literature (Ball,1993; Cenzig, Kline, & Grant, 201; Hiebert & Wearne, 1993; Lampert, 2001; Wood, 2002) there has been very little study into the development of whole group discourse with young children. This year-long study utilized an ethno- graphic case study design to look at the development of whole group mathematical discourse within a first grade classroom. Observations were conducted at three points during the course of the year to study the discourse devel- opment. The findings indicate the challenges associated with orchestrating whole group interactions with young children, and provide a portrait of the teacher and stu- dents "in development." A challenge continues to be the competing goals of engaging students in student-centered discussions, yet ensuring that they learn the required math- ematics described in standards documents, an issue partic- ularly relevant in the current educational climate. Descrip-	Preservice Teachers' Defining and Implementing Mathematical Discourse Lynn Columba, Lehigh University Mathematical discourse or purposeful and intentional math-talk is critical to mathematical development. The purpose of this session is to share research on (1) what are the best techniques to teach math-talk in the class- room to pre-service elementary teachers? (2) what in- structional activities have an impact on helping teachers to plan, teach, and reflect on mathematical discourse in the classroom practices? and, (3) how can novice teach- ers be guided to build a comfortable learning environment so that their students explain processes, make suggestions, and justify their answers while their students are making mistakes and learning from their peers? Let's guide teach- ers to go beyond explaining solutions and strategies and assess the quality of discourse. The tool of language merits the same attention in teacher education that manipulatives receive. The mathematics teacher's ability to cultivate se- rious mathematical thinking in students rests on the nature of classroom discourse.
tions of first grade students' whole group interactions pro- vide insight into what it means to be student-centered and implications for defining the teacher's role in orchestrating student-centered discussions, with the Common Core State Standards for Mathematical Practice (SMPs) in mind. Is- sues and possible areas for future research related to the current educational climate, including implementation of	
the SMPs, will also be discussed in this presentation.	

Time: 9:00-9:50 AM Room: Tampa	
Developing Math Teacher Candidates' Abilities, Skills, and Understandings	Co-Teaching vs. Student Teaching to Develop Teacher Candidates in Education
Skills, and Understandings Alan Zollman, Indiana University Southeast There is a wide body of research that recognizes the impor- tance and benefits of mentoring new teachers as they enter the field. Therefore, it makes sense that we also examine the need to mentor teacher candidates as they embark on their journey of becoming secondary mathematics teach- ers. Teaching middle and secondary school mathematics is an incredibly complex and demanding profession. Men- toring teacher candidates to reach their potential may be even more so an arduous responsibility.	Teacher Candidates in Education Alan Zollman, Indiana University Southeast There is a large body of research that recognizes the im- portance and benefits of mentoring new teachers as they enter the profession (New Teacher Center, 2005; Darling- Hammond, 2000). We also need to support and mentor Teacher Candidates as they begin to practice their craft (Heck, Bacharach, & Dahlberg, 2007). By shifting from a traditional model of student teaching to a co-teaching model, we no longer expect Teacher Candidates to learn the complex art of teaching by leaving them alone to sink or swim. Instead co-teaching can provide them with the involvement, preparation, leadership opportunities, model- ing and coaching they will need to develop their knowledge and skills in a nurturing environment. There are specific advantages in content, structure, assessment, and diver- sity, in co-teaching mathematics, as well as science, Eng- lish/language arts, and social sciences at the secondary level, by having two pairs of knowledgeable hands in the classroom (Dieker & Murawski, 2003). The P-12 Clini- cal Educator partners with the Teacher Candidate, rather than relinquishes responsibility to a student teacher. Co- teaching, first developed in the 1990's at St. Cloud College (Heck, Bacharach & Dahlberg, 2008) focuses on student learning more than content or teacher development. While there are possible problems, we have found specific benefits
	the P-12 Clinical Educator.

Time: 9:00-9:50 AM	Room: Tampa Bay 2
The Impact of Formative Assessment on Primary	Mathematics in the CHARMED World: Teaching
Students' Number Sense Skills	through Robotics
Drew Polly, University of North Carolina at Charlotte	Megan Nickels, University of Central Florida
This presentation will provide the findings of a study that	In a 52-week ethnographic study, I investigated an in-
evaluated a year-long professional development program	tervention for children with chronic illnesses (e.g., can-
focused on supporting teachers' use of an internet-based	cer, sickle-cell disease) using Lego EV3 and WeDo Robot-
formative assessment tool. Data collected using the tool	ics kits, and a tangible-graphical programming language,
was analyzed using multi-level modeling. Findings indi-	Creative Hybrid Environment for Robotics Programming
cated that consistent use of the tool and associated forma-	(CHERP). The intervention addresses issues of children's
tive assessment practices led to significant student growth	mathematical learning. I will present three cases studies of
compared to students whose teachers used the tool less	children (ages 3, 14, and 16) with with acute lymphocytic
frequently. Further, the use of formative assessment was	leukemia (ALL), to depict how robotics contributed to sig-
associated with greater gains in student achievement with	nificant conceptual growth across mathematical domains.
students from poverty and those who were identified as	
struggling learners.	

Room: Tampa Bay 3

Time: 9:00-9:50 AM

Understanding the Motivation to Study Mathematics

Jenny Peters

Oklahoma State University

Higher education institutions typically use quantitative methods to 'know' their student body. This study uses qualitative methods to attempt to understand the illuminate pieces of the student experience in the mathematics and physical sciences department at a small university centrally located in the U.S. While many elements play a part in the student experience, this study seeks to answer the question of how a student's past experiences, attitudes and beliefs, and the instructor and the instructional techniques employed affect the success of the students. A successful mathematics education program seeks to produce students who are mathematically proficient and who show "interest and curiosity...throughout the study of mathematics [to] spark a lifetime of positive attitudes toward the subject" (Leinwand et al., 2014). Students who are successful in a mathematics program will exhibit some or all of these qualities. Interpretations of the qualitative data gathered (e.g. stories) through transcribed interviews, observations and questionnaires illuminate the effects of past experience, attitudes and beliefs and instruction strategy on the success of students in the program. The presentation will discuss the findings of the study and discuss implications for future research into improving mathematics education for a general student population.

Time: 10:00-10:50 AM	Room:	Michigan
But Wait, What do I Say? Blogging to Build Confidence Talking to	Parents	
Kansas Conrady	University of	f Oklahoma

The Personal Choice Project completed as part of a methods course provides the opportunity for students to personalize an assignment and explore a topic of their own choosing in greater depth. One of the options available to the students is to work as part of a group to develop a post for an existing blog for parents of elementary children. The PSETs then complete a written reflection about their overall experience and the impact of the assignment on their future classrooms. While the overall purpose of the assignment is to seek out professional development of their own choosing, many select this topic because they want to learn how to effectively communicate with parents or improve their understanding of a particular aspect of mathematics content. The reflective paper provides insight into their perceptions of the assignment and overall quality of their experience. Information from these assignments will by synthesized to provide preliminary evidence of effectiveness of the assignment as well as additional directions or information for the blog.

Time: 10:00-10:50 AM	Room: Okeechobee 1
Algeblocks to Image Integer and Binomial Multiplication	n
Sarah Pratt	University of North Texas
Eloise Kuehnert	University of North Texas
Colleen Eddy	University of North Texas
Taschers' knowledge of methometics and their skills in tasching methometics are critical to	atudanta' learning of moth

Teachers' knowledge of mathematics and their skills in teaching mathematics are critical to students' learning of mathematics (Hill et al., 2005). The research question we ask is: In what ways do prospective middle grades teachers' understandings of integer and binomial operations change when they are guided through a series of scaffolded tasks that utilize hands-on models to provide images of the mathematical concepts? Assisting PSTs in the purpose for why area models can represent integer and polynomial multiplication is an important undertaking. The specific focus for this report is what changes have occurred in their understandings with respect to multiplication of integers and polynomials. A series of design experiments with middle-grades mathematics PSTs have been conducted, using base-10 blocks, Algeblocks and the quadrant mat. The tasks are scaffolded in such a way that builds on number sense to enhance algebraic reasoning. Preliminary findings from the most recent experiment reveal a more robust understanding of binomial operations than previous studies. These will be shared, along with an outline of the changes that were made across the four experiment. The overall objective of this research is to model an effective set of activities to teach integer and binomial operations to prospective middle grades mathematics teachers in a way that impacts their conceptual understandings. This, in turn, leads to their abilities to listen more flexibly to their own students.

Room: Superior

Time: 10:00-10:50 AM	Room: Okeechobee 2
Developing Teacher Autonomy and Understanding	g Through Inquiry & Discussion
Patrick Brown	Western Kentucky University
Hope Marchionda	Western Kentucky University
The lack of content knowledge for teaching mathematics among pre-	service and in-service teachers at all grade levels
is well documented. Few teachers, even those whose mathematical s	skills appear relatively strong, have a firm grasp
on the true nature of mathematics as a discipline of problem solvin	ig through exploration, struggle, argument, and,
ultimately, understanding. In addition, studies have shown that many	teachers, particularly in the primary grade levels,
have profoundly negative feelings about mathematics which translate	into lower levels of achievement among students.
In an effort to develop teachers who possess deep conceptual under	rstandings of and more positive attitudes about
mathematics, and to prepare teachers to successfully navigate a class	sroom environment where autonomy is the norm,
inquiry- and discussion-based lessons were developed for use in existin	ng geometry classes for preservice teachers at two
levels (elementary/middle and secondary). These lessons utilize high-l	level mathematical tasks and are built around the
CCSSO Standards for Mathematical Practice in an attempt to get stud	lents to interact with problems as mathematicians
do, and to engage them in learning mathematics in the way that the	y will be expected to teach mathematics. In this
session, we share selected lessons from these courses, along with teac	cher and student reflections from the courses. In
addition, we examine whether and how students' attitudes changed or	ver the course of the semester.

1 me. 10.00-10.50 AM	Itoohi. I elisacola Day
Developing a Peer Mentoring Culture among Mathematics Preservice Teachers	
Gabriel Matney	Bowling Green State University
The purpose of the session is to share evidence from an exp	ploratory program evaluation study done for a university in
Southeast Asia on their mathematics education program.	We will explore the research that reveals the facets of the
program that led to a strong peer mentoring culture among	g the mathematics preservice teachers. The peer mentoring
culture led to increased responsibility among the preservice	teachers in their study of teaching, the teaching of younger
preservice teachers, and the engagement of K-12 students	in mathematics. These ideas will set the stage for a group
discussion about field experiences for PST and ways in whi	ch US programs might nurture PSTs professionally prior to
internship.	

Time: 10:00-10:50 AM

The Impact of Clinical Interviews on Pre-service Teachers

Sandra Trowell

Valdosta State University In a mathematics content course for pre-service early childhood and special education students, students were asked to conduct clinical interviews with P-8 students in their practicum experiences. The pre-service students were asked to focus upon their students' mathematics and sense making rather than teaching or correcting the P-8 students. This presentation will focus upon case studies of these pre-service teachers during their interview process – what they learned about listening to and questioning students.

Time: 10:00-10:50 AM	Room: Tampa Bay 1
Tools for Success: Preparing PSTs to Effectively Differentiate Instruction	
Carolyn Mitten	University of Florida
With the increasing diversity of classrooms and pressure for all students to be proficient in a	mathematics, differentiated
instruction has become a hot topic for math educators. Meeting the needs of all learners seems commonsense, but it often	
takes years of experience to effectively reach this goal. Is it possible to provide differentiation tools to pre-service teachers	
(PSTs) before entering the demanding field of teaching? This session presents a dissertation s	study aimed at determining
if explicit instruction and implementation of formative assessments to differentiate instruction	ion can better equip future
teachers to deal with the reality that all students learn math differently. During a course on f	formative assessment, PSTs
will implement learned strategies in a practicum setting and reflect on knowledge and self	f-efficacy gained from their
experiences. Successful strategies and implications for mathematics teacher preparation will	be discussed.

Time: 10:00-10:50 AM	Room: Tampa Bay 2
Developing Mathematical Content Knowledge	for Teaching Using Modeling Tasks
Farshid Safi	University of Central Florida
Teacher education programs seek to engage prospective teachers in	n meaningful mathematical experiences that prepare
them to teach mathematics with a deep understanding while learning	ing effective ways to prepare future students. Models
and mathematical modeling simultaneously present a challenge an	id an opportunity in a world full of interdisciplinary
connections. Recent research efforts have begun to describe ways	s in which prospective and practicing teachers' con-
ceptions of models and modeling would be enhanced through eng	agement with mathematical tasks that purposefully
integrate the use of dynamic technologies. In addition, modeling a	represents a critical aspect in rigorous national stan-
dards both as an integral mathematical practice as well as a concept	ual category. This presentation focuses on the impact
of modeling tasks in addressing mathematical misconceptions whi	le highlighting the significance of content knowledge
crucial in modeling with connections to other disciplines. In ore	ler to effectively engage in mathematical modeling,
standards for mathematical practice involving the strategic use of	tools – such as dynamic technologies - and attention
to precision will also be discussed. Lastly, future implications for	teacher education as well as ideas to generate and
disseminate such modeling tasks will be discussed.	

Time: 10:00-10:50 AM	Room: Tampa Bay 3
Improving Online Students' Learning in Statistics Using Curricular Supports	
Taylor Jensen	Western Governors University
Jeffrey Sadler	Fort Hays State University
Because of convenience, low relative cost, and other factors, more	e and more students—especially non-traditional stu-
dents—are opting for online introductory statistics courses over fa	ce-to-face courses. For such students, the addition of
curricular supports which might enhance students' learning of the	material is desirable, since the traditional interaction
with an instructor afforded in face-to-face classrooms is absent. T	he effectiveness of any such supplementary curricular
supports, however, needs to be tested through the collection and a	analysis of appropriately gathered data. To that end,
the CAOS Pre-Test and Post-Test were given to $n=440$ students over	er the course of four semesters at a public university in
the Midwest. Of these students, 93 were enrolled in an online cours	e with extant curricular supports, with the remaining
347 students enrolled in a face-to-face course utilizing traditional p	bedagogy. The curricular supports for online students
consisted of activities comprised of open-ended questions involving	real-life data in order to promote statistical thinking.
Gain scores for each group were computed (6.27 percentage point	s for the online group versus 1.02 for the face-to-face
group), and although the difference was not statistically significant	t, the results suggest that the online students learned
statistical concepts to the same or better extent as the face-to-fac	e students. The implications of these results to both
research and practice will be discussed.	

Time: 11:00-11:50 AM	Room: Michigan
Two Paths Converged: The Story of	a Math Teacher and a Math Phobic
Marcia Fletcher	L W Westfall Elementary Choctaw
Justin Fletcher	Choctaw Middle School
Darlinda Cassel	University of Central Oklahoma
A preservice math teacher and a math hater begin a journey	y that took them through a variety of challenges but ended
in a love of math for both. Come hear the story as told first	t hand by this couple.

Time: 11:00-11:50 AM	Room: Okeechobee 1
Using Apps to Develop Students' Understanding and Attitudes	s about Fractions
Darlinda Cassel	University of Central Oklahoma
Students struggle with understanding fractions. With many schools moving to one-t	co-one iPad implementation, it is
important to determine if apps are effective in developing middle school students' und	lerstanding of fractions and their
operations. Additionally, it is essential to examine how students' attitudes towards l	learning fractions are affected by
using fraction apps. This mixed methods study explored how students' dispositions to	ward fractions and understanding
of fractions were affected by having experiences with fraction apps in their mathem	natics classes. We will share our
findings as well as the apps we used during the study.	

Room: Okoochoboo 2

Time: 11:00-11:50 AM

11110. 11.00 11.00 11.01	
Teacher Reflections on a Curricular Activity System	
Karina Hensberry	University of South Florida St. Petersburg
George Roy	University of South Carolina
In order for teachers to enable st	udents to engage in rich content and mathematical practices, professional development

(PD) providers must support teachers to develop (a) their mathematical knowledge for teaching (Hill, Schilling, & Ball, 2004), (b) their use of appropriate tools and technology, and (c) curricular resources that align with the CCSSM. To this end, curricular activity systems (Roschelle, Knudsen, & Hegedus, 2010) align PD, curricular materials, and technology. We describe a research effort in which we developed interactive simulations and accompanying curricula to teach middle grades mathematics topics (e.g., rates, ratios, proportions, linear expressions) and provided PD to support sixth and seventh grade teachers in deepening their mathematical knowledge for teaching and their Technological Pedagogical Content Knowledge (Niess, 2005). We then investigated their teaching of the mathematics content as they implemented the curricular activity system in a large, urban school district in Florida. Based on these results, we modified the curriculum materials, technology, and PD experiences for a new group of teachers. In this session, we specifically explore middle school teachers' perceptions of the curricular activity system, and in particular, their reflections on implementation of two of the technology-based units. We describe successful aspects of the PD, as well as areas needing modification.

Time: 11:00-11:50 AM **Room:** Pensacola Bay Examining Preservice Teachers' Culturally Relevant Teaching Nickolaus Ortiz Texas A&M The present research is an examination of teaching for equity approaches within a virtual simulation classroom. Preservice teachers taking a mathematics problem solving course were challenged to create a lesson plan grounded in one of the following conceptual schemes: situated learning, culturally relevant teaching, or critical pedagogy. A primary focus of the Knowledge for Algebra Teaching for Equity (KATE) Project is to help prospective teachers design equity-rich lesson plans that serve the needs of all mathematics students. The lessons created by pre-service teachers are examined for a variety of features, but the focus of the present research is on those elements which facilitate and promote equity. Lesson plans submitted to the instructor are constructed with the admonition that a commitment to one of the three conceptual frameworks should have vestiges of this framework evidenced in their write-up. This research discusses the trends that permeate lessons identified as culturally relevant and compares data from two semesters to determine whether pre-service teachers proffered identical justifications. The analysis uses the Culturally Relevant Teaching Rubric (CRTR) to rate the level of cultural relevance within each lesson plan. We note pretentious intuitions of culturally relevant lessons and offer suggestions in how to help pre-service teachers develop teaching for equity strategies.

Time: 11:00-11:50 AM	Room: Superior
Implementing the edTPA in Mathematics: "A Wonderful, Awful Idea	a"
Tony Thompson East	t Carolina University
Kwaku Adu-Gyamfi East	t Carolina University
Maureen Grady East	t Carolina University
The East Carolina University mathematics education program is currently in its 4th year imple	ementing the edTPA
(educative Teacher Performance Assessment). This presentation explores the perceptions and experiences of pre-service	
teachers and university faculty regarding the edTPA, aspects of the edTPA that are challenging to pre-service teachers,	
and the impact the edTPA has had on university coursework and policies. Data were collected using	g interviews, surveys,
and edTPA artifacts. Findings indicate that pre-service teachers struggle most with assessment an	d academic language
as well as articulating their ideas, particularly with respect to differentiating conceptual understanding, reasoning,	
and procedural fluency. Although many pre-service teachers felt "overwhelmed" completing the edTPA, most agreed	
that it helped make them better and more reflective teachers. University faculty have conflicting	g perceptions on the
edTPA and its role in teacher development with some seeing it as "wonderful" and others "awful"	". Recommendations
for implementing the edTPA in mathematics education programs will be provided.	

Time: 1:30-2:20 PM Room	n: Michigan
Facilitating Mathematical Conversations in Diverse Classrooms: A Case Study	
Mercedes Sotillo-Turner Full S	Sail University
The researchers in this case study sought to explore the use of culturally responsive teaching (CRT) practice	s to determine
the ways that teachers support their students to create viable arguments and critique the reasoning of or	thers (SMP3).
To achieve this goal, the self-conceived classroom roles of two teachers, one experienced and one novice	, were elicited
and compared to their actualized roles. Both teachers were provided with professional development ((PD) centered
on CRT practices focused on improving student engagement in SMP3. This PD was informed by the g	uidelines that
describe the behaviors students should exhibit as they are engaged in SMP3 as well as CRT comport	nents, such as
teacher characteristics and instructional strategies. The teachers were observed, video recorded, and interv	viewed during,
immediately after, and four weeks after the PD. The marked differences in each case added to the rob	ustness of the
results. The cross-case analysis established that the support that teachers are able to provide to stud	lents depends
on (a) teaching experience, (b) shift in teacher practice, (c) depth and breadth of the knowledge of CR	T and SMP3,
(d) teacher content and pedagogical knowledge, (e) teacher expectations, reception, and reflection, and	(f) classroom
management. Study results provide implications regarding the kinds of support teachers might need as the	ey attempt to
motivate culturally diverse students to engage in SMP3.	

Asking the Right Questions – Young Children's Perception of NumberPat JordanRetired from Oklahoma State UniversityHarking back to the questions Piaget developed as a measure of young children's understanding of number, area, volume, and linear measures, this study focuses on young children's ideas of number and counting. Their responses reflect their understanding, not the preconceived "right" answers the researcher expected. Accepting the children's responses meant letting go of long-held ideas of what young children know and how they learn. Although a very small sample, the results reinforced the notion that asking the right questions means rethinking the right answers. Listening to children's responses to what a number is or asking why a child shifted when counting between English and Chinese counting opened new ideas about what per number skills young children understand	Time: 1:30-2:20 PM	Room: Okeechobee 1
Pat Jordan Retired from Oklahoma State University Harking back to the questions Piaget developed as a measure of young children's understanding of number, area, volume, and linear measures, this study focuses on young children's ideas of number and counting. Their responses reflect their understanding, not the preconceived "right" answers the researcher expected. Accepting the children's responses meant letting go of long-held ideas of what young children know and how they learn. Although a very small sample, the results reinforced the notion that asking the right questions means rethinking the right answers. Listening to children's responses to what a number is or asking why a child shifted when counting between English and Chinese counting opened new ideas about what per number skills young children understand	Asking the Right Questions – Young Childre	en's Perception of Number
Harking back to the questions Piaget developed as a measure of young children's understanding of number, area, volume, and linear measures, this study focuses on young children's ideas of number and counting. Their responses reflect their understanding, not the preconceived "right" answers the researcher expected. Accepting the children's responses meant letting go of long-held ideas of what young children know and how they learn. Although a very small sample, the results reinforced the notion that asking the right questions means rethinking the right answers. Listening to children's responses to what a number is or asking why a child shifted when counting between English and Chinese counting opened new ideas about what per number skills young children understand	Pat Jordan	Retired from Oklahoma State University
and linear measures, this study focuses on young children's ideas of number and counting. Their responses reflect their understanding, not the preconceived "right" answers the researcher expected. Accepting the children's responses meant letting go of long-held ideas of what young children know and how they learn. Although a very small sample, the results reinforced the notion that asking the right questions means rethinking the right answers. Listening to children's responses to what a number is or asking why a child shifted when counting between English and Chinese counting opened new ideas about what per number skills young children understand	Harking back to the questions Piaget developed as a measure of young of	children's understanding of number, area, volume,
understanding, not the preconceived "right" answers the researcher expected. Accepting the children's responses meant letting go of long-held ideas of what young children know and how they learn. Although a very small sample, the results reinforced the notion that asking the right questions means rethinking the right answers. Listening to children's responses to what a number is or asking why a child shifted when counting between English and Chinese counting opened new ideas about what per number skills young children understand	and linear measures, this study focuses on young children's ideas of nu	umber and counting. Their responses reflect their
letting go of long-held ideas of what young children know and how they learn. Although a very small sample, the results reinforced the notion that asking the right questions means rethinking the right answers. Listening to children's responses to what a number is or asking why a child shifted when counting between English and Chinese counting opened new ideas about what per number skills young children understand	understanding, not the preconceived "right" answers the researcher exp	pected. Accepting the children's responses meant
results reinforced the notion that asking the right questions means rethinking the right answers. Listening to children's responses to what a number is or asking why a child shifted when counting between English and Chinese counting opened new ideas about what per number skills young children understand	letting go of long-held ideas of what young children know and how	they learn. Although a very small sample, the
responses to what a number is or asking why a child shifted when counting between English and Chinese counting opened new ideas about what per number skills young children understand	results reinforced the notion that asking the right questions means ret	hinking the right answers. Listening to children's
opened new ideas about what per number skills young children understand	responses to what a number is or asking why a child shifted when	counting between English and Chinese counting
opened new ideas about what per-number skins young children understand.	opened new ideas about what per-number skills young children unders	stand.

Time: 1:30-2:20 PM	Room: Okeechobee 2
Identifying Barriers to Pre-Service Teachers' Mathematical Confidence	
Ryan Fox	Belmont University
William McGalliard	University of Central Missouri
Mathematics education researchers have long been interested in pre-service e	elementary teachers' struggle with math-
ematical content. Although prior research suggests specific deficiencies in th	neir mathematical knowledge, pre-service
elementary teachers are asked to complete tests or task-based interviews.	We want to capture their mathematical
struggles in their own words. We interviewed pre-service teachers in two diffe	ferent university settings to gain broader
perspectives of the challenges facing mathematics educators. In our presentati	ion, we will present findings of our initial
study of pre-service teachers. Not only are future elementary teachers fearful	l of teaching mathematics, but there are
certain mathematical concepts they are particularly fearful in teaching. Our goa	al is to provide a set of mathematical con-
cepts identified by the participants to move the discussion—and research—for	ward. We encourage session participants
to provide feedback on our results and to suggest future research based on our	r findings.
Time: 1:30-2:20 PM	Room: Pensacola Bay
Changing the Mathematics Teaching Culture to Improve Instruction	

Bob Drake Kathleen Hulgin SUNY Plattsburgh University of Cincinnati - Clermont

Workshops to improve mathematics instruction rarely alter the fundamental view towards teaching mathematics. A different approach with a longer lasting and more significant impact involves altering the mathematics teaching culture in the school and district. Cultural change requires more than merely presenting a few teaching ideas to emphasize the importance of mathematical understanding and problem solving. It involves changing the beliefs of teachers and administrators, as well as the practices based on those beliefs. This much larger challenge is absolutely requisite in establishing improvement in mathematics teaching. This study describes the elements required to change the mathematics teaching culture was altered, standardized test scores improved by a standard deviation, and – more importantly – a change in instructional emphasis that lasted for an additional three years beyond the study was obtained.

Time: 1:30-2:20 PM	Room: Tampa Bay 1
Integrating Algebra and Literature in a Mathematics Educ	ation Course
Ann Wheeler	Texas Woman's University
Carole Hayata	Southern Methodist University
During this session, the presenters will discuss a course assignment developed for pr	reservice teachers focused on the
integration of mathematics and literacy. The preservice teachers were enrolled in a u	niversity mathematics education
course which focused on middle school mathematics (Grades 6-8) content. The assig	ment under study involved the
creation of a problem-solving, multimedia, storybook that combined operations with in	ntegers and literacy. The purpose
of this assignment was to provide preservice teachers with the opportunity to 1) extend	their own understanding of early
algebra concepts, 2) develop strategic competence by formulating, representing, and	solving mathematical problems
arising in every day life, inside and outside of the classroom (Principles to Action, T	EKS Process Standards, CCSS-
MP), and 3) utilize a differentiated instructional strategy focused on increasing student	engagement by situating the task
based on student interests. The specific components of the assignment were revised ov	er 3 semesters based on feedback
from current 6th grade students who reviewed the final storybooks and reflections from	n the preservice teachers enrolled
in the course. The details of the revised course assignment and sample storybooks will be presented. Comments from	
session participants will be considered for future iterations and dissemination.	
Time: 1:30-2:20 PM	Room: Tampa Bay 2
Student Understanding of Traditional and Simulation-based Inference Methods	
Catherine Case	University of Florida

At the recommendation of several prominent statistics educators, most notably George Cobb (2007), simulation-based inference methods have begun to replace or complement traditional inference methods in many introductory statistics courses. To explore how complementing traditional inference with simulation-based methods impacts conceptual understanding of the core logic of inference, task-based interviews were conducted with seven AP Statistics students familiar with both inference methods. During the interviews, students were asked to "think aloud" as they used traditional inference methods (z-tests or t-tests) and simulations (using coins, cards, and computer applets) to estimate p-values and draw conclusions about statistical significance in the context of real research studies. Students were then prompted to compare and contrast the approaches, describing the connections perceived between the two. In ongoing research, students' written work and verbal explanations are being analyzed using inductive qualitative methods. This session will present the preliminary findings of the data analysis and solicit feedback for theory development and future research directions.

Time: 2:30-3:20 PM R	loom: Michigan
An Alternative Route to Bypass Developmental Mathematics	
Linda Venenciano University of	Hawaii at Manoa
Fay Zenigami University of	Hawaii at Manoa
Prior research has shown that developmental education, particularly in mathematics, has failed to	prepare students
for college credit-bearing courses (Achieving the Dream, 2008; Bailey et al., 2010; Bettinger & Long,	, 2005). Although
the intent of developmental education is to provide underprepared students with support, two of	three community
college students referred to a remedial mathematics sequence do not complete the courses (Bailey e	t al., 2010). This
poses a serious threat to opportunities and access to STEM careers, where a basic aptitude in college	ge mathematics is
a prerequisite. An experimental, college credit-bearing algebra course was designed as an option for	r a developmental
mathematics course. It addressed the set of required topics using an approach that provided additional additional additional additional addressed additional addressed additional addressed addresse	itional support to
struggling students while incorporating modeling investigations from A Modeling Approach to Alge	ebra to emphasize
mathematical modeling as creative and productive for problem solving. Instruction diverged from a	a more traditional
lecture-based approach and students were encouraged to work in groups and justify their thinking. In	this presentation
we will describe adaptations made to the course content and instruction and share findings from c	class observations,
instructor interviews, surveys on attitude and engagement, and student work. Implications from this	s study could lead
to developmental mathematics course alternatives at the community college level.	

Time: 2:30-3:20 PM

Room: Okeechobee 2

Time: 2:30-3:20 PM	Room: Okeechobee 1
Identifying and Reducing Mathematics Anxiety in Preservice	e Teachers
Gina Gresham	University of Central Florida
Limited research studies exist which use pre-post measurement, interviews, and classroom	m observations to examine the
effectiveness of a university mathematics methods course for pre-service teachers. The	purpose of this study was to
present research concerning the effects of mathematics anxiety among pre-service teachers	s, and to discuss ways in which
mathematics anxiety can be reduced among pre-service teachers and their future stude	ents. This study utilized both
quantitative and qualitative techniques in a quasi-experimental design to investigate the	effects of mathematics anxiety
among pre-service teachers. Heavy emphasis was placed upon concrete learning of m	athematical content by use of
manipulatives, cooperative learning strategies, constructivism, and other techniques du	ring the mathematics methods
and materials courses for pre-service teachers. The qualitative data suggested that pre-ser	vice teachers had high levels of
mathematics anxiety and that the mathematics methods course with emphasis on hands	-on instruction did relieve and
reduce their anxiety. Through questionnaire guided interviews, pre-service teachers indi	cated they were better able to
understand the mathematics material when presented on the concrete or pictorial levels.	The quantitative data from the
pre-and-post mathematics attitude survey indicated a significant difference in pre-service	e mathematics anxiety levels.

Time: 2:30-3:20 PMRoom: Pensacola Bay
Using Measurement to Develop Proportional Reasoning in a Cultural Context
Melfried Olson University of Hawaii
Judith Olson University of Hawaii
This session will discuss the development of curriculum materials that use measurement in a cultural context as the
foundation for learning mathematics. These materials are initially based on non-numerical comparisons. Because mea-
surement as a comparison of two quantities inherently is a ratio, 'ratio reasoning' is key for early development of
mathematics. Using attributes of length and area, we will describe how measurement sets the stage for mathematical
operations, mathematical properties, and algebraic reasoning. The cultural context is built around Indigenous Knowl-
edge from Yup'ik Elders, with specific emphasis on connections to geometric ideas. While Indigenous people across
geographical and cultural boundaries do not prize exact or precise use of numbers, they hold within their knowledge a
way of approaching the teaching of rational number concepts through the use of symmetrical measuring and measuring
as comparing. We illustrate how symmetrical measuring from the center is part of a spatial-locative system that enables
individuals who must perform a wide range of everyday tasks a way to minimize cognitive load and stress through a
generative way of thinking and doing. We will provide a number of different examples across activities that establishes
the centrality of related concepts of center, symmetry, measuring, halving, and relative measures leading to a way to
teach aspects of elementary school mathematics within the practice and context of measurement.

Room: Superior

University of Central Florida

Time: 2:30-3:20 PM The Effectiveness of Professional Development: Retention of Teacher Content Makini Campbell-Sutherland This presentation describes the methods to be undertaken in conducting research on teachers' retention of content overtime after being involved in professional development activities. Gersten et al., (2014) highlight the need for more research in the area of effectiveness of professional development activities as school districts are unable to use the limited information available to make the needed informed decisions. Processes that will be included in this research

include collecting data immediately before and after the professional development activities and then at intervals over the period of the following school year. As the many professional development activities take place, there is the need to measure how sustainable these training efforts are as it relates to the retention of teacher content knowledge. Knowing the effectiveness of these efforts measured over a period of time will help to inform the frequency and emphasis of professional development activities. Ideas for improvement will also be ascertained from mathematics educators.

Time: 2:30-3:20 PMRoom: Tampa Bay 1
Breaking or Perpetuating Perceived Norms in Content Courses for PSETs?
Kansas Conrady University of Oklahoma
There is a need for high quality elementary teachers that are both knowledgeable and confident in mathematics content.
The CBMS acknowledged the complexity of this task and provided the Mathematical Education of Teachers II as a
guide for developing the teacher's Mathematical Knowledge for Teaching. This exploration into math content courses
for pre-service elementary teachers completing a traditional route to certification in a mid-western state consisted of
both an analysis of courses offered as well as syllabi provided for each course by nearly every program in the state.
Findings suggest that even though the state requires all PSETS to complete 12 hours of mathematics content that
"meet the standards proposed by NCTM," most programs fell short of not only the state requirements but also the ideas
presented in MET2 for the development of the teacher's MKT. Content courses have the opportunity to set the stage for
a different way of teaching and learning mathematics, however this analysis suggests that courses may instead reinforce
perceived norms for the effective teaching and learning of mathematics. Continued research is needed to explore not
only the long-term impact of these courses on the overall development of the teacher but also the actual enactment of
the ideas presented in the syllabus. Lastly, there is also a need to share the variety of strategies employed by universities
facing different relationships between pedagogy and content instructors.

Time: 2:30-3:20 PM Room: Tampa Bay 2

The Development of Exemplary Statistics Teachers' Professional Identities

Douglas Whitaker

University of Florida

Statistics and probability represent about one-fifth of the standards in the widely-adopted Common Core State Standards for Mathematics (CCSSM). For many states, this represents an increased emphasis on statistical topics. This statistics and probability content will be taught by mathematics teachers who, by and large, have received little statistical training. In order to teach statistics in a way that is faithful to its position as a discipline distinct from mathematics (Moore & Cobb, 2000), teachers may need to change their beliefs, attitudes, values, and instructional practices related to mathematics and statistics. This study conceptualizes these changes as identity development. The identity framework used is informed by communities of practice (Lave & Wenger, 1991; Wenger, 1998) and the work of Gee (2000), among others. Beliefs, attitudes, values, and other affective constructs (Philipp, 2007) are included as components of identity in this conception. The primary research question addressed by this study is, "What learning trajectories help to explain the identity of exemplary statistics teachers?" The focus on exemplary in-service statistics teachers – recommended for participation by experts in the field – represents a type of critical case sampling (Patton, 2002). Semi-structured interviews were conducted with participants. Data are being analyzed using inductive analysis (Hatch, 2002), and this presentation includes preliminary results.

Time: 3:30-4:20 PM Room: Michigan

Mindset and Mathematics

Eileen Faulkenberry

Tarleton State University Carol Dweck introduced the idea of fixed vs. growth mindset in her 2006 book Mindset: the new psychology of success. One who believes that intelligence or ability is something that can be developed exhibits growth mindset while one who believes intelligence or ability is inherent, or fixed, exhibits fixed mindset. Many studies have shown that a person's mindset can impact his/her achievement. This presentation will explore the early literature on mindset and its impact on the learning of mathematics. In addition, we discuss a study currently in progress that is attempting to determine if there is a relationship between mindset and numerical fluency. In this study, participants complete tasks to classify their mindset, assess their numerical fluency, and determine their level of mathematics anxiety. Data will be analyzed using a linear regression model to determine relationships among mindset, numerical fluency, and mathematical anxiety. Preliminary data will be presented during this presentation.

Time: 3:30-4:20 PMRoom: Okeechobee 1	
From Manipulatives to Social Justice: An Ecological Model for Relatedness	
Kenneth Butler University of South Florida	
Welcome to a discussion on a new framework for relatedness of mathematical content. As one of the three psychological	
needs described by Ryan and Deci (2000), relatedness of content is key to motivating students to engage in mathematics.	
During this presentation, levels of relatedness beginning with using manipulatives, to simulating real world situations, to	
incorporating social justice issues, relationships between students and mathematical content will be discussed utilizing	
Bronfenbrenner's ecological model of development (1998). During the presentation you will get the opportunity to	
engage in mathematical tasks that mirror these various levels of relatedness. We will work with and discuss using toys	
as manipulatives, using peer collaboration to collect and interpret data, simulating local shops to create educational	
opportunities, and incorporating social justice issues to demonstrate the power of mathematical and statistical thinking.	
By developing an ecological framework for relatedness it may be possible to affect learning by incorporating multiple	
developmental levels into mathematical tasks in an effort to engage many types of learners. Bronfenbrenner, U., &	
Morris, P. A. (1998). The ecology of developmental processes. Ryan, R. M., & Deci, E. L. (2000). Self-determination	
theory and the facilitation of intrinsic motivation, social development, and well-being. American psychologist, 55(1), 68.	

Time: 3:30-4:20 PM	Room: Okeechobee 2	
Implementing Reform Initiatives: A Case Study of a High School Teacher		
Kwaku Adu-Gyamfi	East Carolina University	
Tony Thompson	East Carolina University	
This research involved a case study of a high school teacher's endeavor to teach mat	thematics with fidelity to reform	
initiatives in the CCSS-M and the principles to actions document of the NCTM. Over	er a three year period, data were	
collected via observations, interviews, surveys, and artifacts (e.g., lesson plans, activities	s, student work). Results indicate	
that after initially struggling to understand and implement the CCSS-M, the teacher	made significant changes which	
ultimately impacted her teaching and career as a math educator. Areas most strong	gly impacted were incorporating	
higher-level reasoning, academic language, assessment and teacher leadership.		

Time: 3:30-4:20 PM	Room: Pensacola Bay
iPad Apps for Early Math Learning	
Amy Adkins	University of Nevada, Las Vegas
Lina DeVaul	University of Nevada, Las Vegas
Taro Ito	University of Nevada, Las Vegas
The use of iPads are more prevalent in early elementary classrooms and can provide	opportunities for young children

to learn foundational math skills. In this study researchers look at math content addressed through iPad apps which includes subitizing, ordering, counting, cardinality, identifying numbers, comparing, place value, adding, and subtracting. Developing these skills in children promotes successful math progression. iPad apps allow children opportunities through play to develop knowledge of early math concepts. Attendees will be provided a framework that examines the tasks in the apps for scope of mathematics content and cognitive demand of the tasks. In this session, we will share what we have learned about iPads apps design to amplify learning experiences for young children.

Time: 3:30-4:20 PM

Publish in the Investigations Journal!

University of North Carolina at Charlotte

This session will provide participants with the opportunity to dialogue about the process of submitting articles to the Investigations in Mathematics Learning journal. There also will be opportunities to learn more information about reviewing for the journal and becoming more involved with RCML publications.

Mathematics Knowledge for Secondary Teaching?

Time: 3:30-4:20 PM

Room: Tampa Bay 1

Room: Superior

Bob Mann Anita Reid

Drew Polly

Western Illinois University Lewistown High School

Assessments have been created and widely distributed to measure elementary teachers (K-8) Mathematical Knowledge for Teaching (MKT). In particular, the Learning Mathematics for Teaching (LMT) project has produced many such assessments and related research (Ball, Bass, Blunk, et. al.). Yet, are there similar assessments to measure the MKT for secondary teachers? Should there be? Why have such efforts been limited? What aspects and item types might be included on such assessments and what sort of research would be needed or valuable? The presenters addressed these questions when trying to create such an assessment as part of a Mathematics Science Partnership grant this year. They intend to share what they learned within this process as well as samples from this assessment. They will also discuss and hopefully identify what elements should be included on such assessments and with what objectives and purpose? The dialogue will also include potential barriers to such an assessment for secondary teachers, the ability to evaluate such assessments in an efficient manner and the need for related research and analysis.

Time: 3:30-4:20 PM R	loom: Tampa Bay 2
The Elephant in the Room: Students' Mathematics-Related Beliefs	
Cathrine Maiorca University	of Nevada - Las Vegas
The mathematics-related beliefs that students bring to the classroom can impact their perfor	mance on non-routine
problems. In order for researchers and teachers to completely understand students' mathematic	ical performances they
need to understand students' mathematics-related beliefs. This presentation discusses the fin	dings of a study that
examined the mathematics-related beliefs of fourth and fifth grade students who participated in	an after school STEM
program.	

Time: 8:00-8:50 AM	Room: Michigan	
Let's Get Graphic! Learning About Student Understanding With Frayer Models		
Mary Swarthout	Sam Houston State University	
Valerie Sharon	Sam Houston State University	
Graphic organizers, including Frayer models, are important tools that can be used to p	rovide opportunities for learners	
to reflect and synthesize what they know and understand about a topic, concept, or ide	a. This session will discuss what	
a Frayer model is, how it was used with preservice and non-preservice undergraduate s	students, why this tool was used	
during the study, and beginning results of what was learned about student understand	ding of logarithms. Examples of	
student-created Frayer models will be used to discuss techniques of assessing and evaluate	ting Frayer organizers as a useful	
approach to improve student understanding of mathematical concepts.		

Time: 8:00-8:50 AM Room: Okeechobee 1
Beliefs about Social Justice among Elementary Mathematics Teachers
Brian Evans Pace University
The purpose of this study was to measure teacher beliefs about social justice over the course of an elementary math-
ematics teaching methods course. The participants in the study came from three unique groups of in-service and
preservice teachers in a master's degree program at a medium-size university in New York: New York City Teach-
ing Fellows (NYCTF), Teacher Education Assessment and Management (TEAM) program, and traditional preservice
teacher preparation program. Findings revealed that while there were no differences in beliefs over the course of the
semester, NYCTF teachers had more positive beliefs about social justice than did TEAM teachers. Teachers felt most
positively about incorporating diverse cultures and experiences into classroom lessons and discussions; self-examination
of attitudes and beliefs about race, class, gender, disabilities, and sexual orientation; and teaching students to think
critically about government positions and actions.

Time: 8:00-8:50 AM	Room: Okeechobee 2
Our Emporium Model in Precalculus: Anot	her Year of Learning and Growing
Tracey Howell	University of North Carolina at Greensboro
Carol Seaman	University of North Carolina at Greensboro
Our goal for the presentation is to engage participants in discus	sions around the successes and challenges of using an
Emporium model of instruction in our undergraduate Precalculus	s classes, which serve as the introductory mathematics
course for STEM majors. In the mathematics classrooms of co	olleges and universities across the United States, the
Emporium model of instruction has become a popular alternativ	ve to traditional lecture courses for introductory-level
mathematics classes and we believe our Emporium model at UNC	CG is a successful alternative for hundreds of students.
These blended courses combine online components, task-based	class meetings, and weekly computer lab attendance
requirements to provide a unique learning experience and prome	be student understanding. We feel strongly that the
pedagogical changes we have implemented are better serving our	students and enabling them to become both stronger
mathematically and more confident in their abilities to understand	l and "do math". We will build our previous conference
presentation and discuss the results of the changes we implement	ed over the past year.

Time: 8:00-8:50 AM	Room: Pensacola Bay
Math Dance: A Study of Effectiveness	
Rachel Bachman	Weber State University
Erik Stern	Weber State University
Learn how mathematics and dance were combined in an innovative general education co	ollege classroom. Participants
will join an interactive demonstration of one of the physical motion activities used to exp	lore the mathematics content
in the course. The presentation will highlight the key elements of the course and report o	on the analysis of the research
methods used to investigate the effectiveness of this integrated project. The analysis will	compare results on standard
mathematical questions, an attitudinal survey, a drawing prompt, and a problem solving	g interview of students in this
project with the performance of students in a traditional general education mathematics of	course.

Time: 8:00-8:50 AM	Room: Superior
Association between Students' Strategy Use and their Math Achievement	
Nesrin Sahin	University of Central Arkansas
Juli Dixon	University of Central Florida
This observational study uses empirical data with a large sample of first and second grade students to investigate	
association between students' use of strategies in a mathematics interview and their mathematics achievement. Previous	
research on student strategies has generated strong theoretical claims informed by small-scale empirical study and	
analysis. The present study provides an opportunity to test whether the hypotheses generated through those smaller-	
scale studies are confirmed with a larger and more diverse sample of students. The results of this study will yield	
important insights that may inform policy concerning curr	iculum standards, assessment, and testing conditions. The
results will also inform education research by gaining new insight into the association between students' use of strategies	
and their mathematics achievement.	
and their mathematics achievement.	Deseus Menure Dess 1
and their mathematics achievement. Time: 8:00-8:50 AM Hali Stable to Later This Is Chiling the Alerthematics	Room: Tampa Bay 1
and their mathematics achievement. Time: 8:00-8:50 AM Helping Student Interns Think Critically About	Room: Tampa Bay 1 What Went Wrong: Pre-Service Teachers' Reflec-
and their mathematics achievement. Time: 8:00-8:50 AM Helping Student Interns Think Critically About Their Teaching Lessons	Room: Tampa Bay 1 What Went Wrong: Pre-Service Teachers' Reflec- tions on Lesson Planning
and their mathematics achievement. Time: 8:00-8:50 AM Helping Student Interns Think Critically About Their Teaching Lessons Cynthia Orona, University of Arkansas	Room: Tampa Bay 1 What Went Wrong: Pre-Service Teachers' Reflec- tions on Lesson Planning Glenn Phillips, Texas A&M University
and their mathematics achievement. Time: 8:00-8:50 AM Helping Student Interns Think Critically About Their Teaching Lessons Cynthia Orona, University of Arkansas Pre-service teachers are required to complete an internship	Room: Tampa Bay 1 What Went Wrong: Pre-Service Teachers' Reflec- tions on Lesson Planning Glenn Phillips, Texas A&M University As pre-service teachers begin to plan lessons and classroom
and their mathematics achievement. Time: 8:00-8:50 AM Helping Student Interns Think Critically About Their Teaching Lessons Cynthia Orona, University of Arkansas Pre-service teachers are required to complete an internship which eventually requires them to independently teach in	Room: Tampa Bay 1 What Went Wrong: Pre-Service Teachers' Reflections on Lesson Planning Glenn Phillips, Texas A&M University As pre-service teachers begin to plan lessons and classroom engagement strategies, it is important to note where their
and their mathematics achievement. Time: 8:00-8:50 AM Helping Student Interns Think Critically About Their Teaching Lessons Cynthia Orona, University of Arkansas Pre-service teachers are required to complete an internship which eventually requires them to independently teach in their placement classroom. The lessons that they have cre-	Room: Tampa Bay 1What Went Wrong: Pre-Service Teachers' Reflections on Lesson PlanningGlenn Phillips, Texas A&M UniversityAs pre-service teachers begin to plan lessons and classroomengagement strategies, it is important to note where theirassumptions conflict with reality. Relying on data from 60
and their mathematics achievement. Time: 8:00-8:50 AM Helping Student Interns Think Critically About Their Teaching Lessons Cynthia Orona, University of Arkansas Pre-service teachers are required to complete an internship which eventually requires them to independently teach in their placement classroom. The lessons that they have cre- ated in prior methods courses have not been as realistic as	Room: Tampa Bay 1What Went Wrong: Pre-Service Teachers' Reflections on Lesson PlanningGlenn Phillips, Texas A&M UniversityAs pre-service teachers begin to plan lessons and classroomengagement strategies, it is important to note where theirassumptions conflict with reality. Relying on data from 60students over 7 semesters, this presentation explores stu-
and their mathematics achievement. Time: 8:00-8:50 AM Helping Student Interns Think Critically About Their Teaching Lessons Cynthia Orona, University of Arkansas Pre-service teachers are required to complete an internship which eventually requires them to independently teach in their placement classroom. The lessons that they have cre- ated in prior methods courses have not been as realistic as they were visitors in the classroom and the expectations	Room: Tampa Bay 1What Went Wrong: Pre-Service Teachers' Reflections on Lesson PlanningGlenn Phillips, Texas A&M UniversityAs pre-service teachers begin to plan lessons and classroomengagement strategies, it is important to note where theirassumptions conflict with reality. Relying on data from 60students over 7 semesters, this presentation explores students' experience with planning and executing a middle
and their mathematics achievement. Time: 8:00-8:50 AM Helping Student Interns Think Critically About Their Teaching Lessons Cynthia Orona, University of Arkansas Pre-service teachers are required to complete an internship which eventually requires them to independently teach in their placement classroom. The lessons that they have cre- ated in prior methods courses have not been as realistic as they were visitors in the classroom and the expectations were different. During their internship, the expectation	Room: Tampa Bay 1What Went Wrong: Pre-Service Teachers' Reflections on Lesson PlanningGlenn Phillips, Texas A&M UniversityAs pre-service teachers begin to plan lessons and classroom engagement strategies, it is important to note where their assumptions conflict with reality. Relying on data from 60 students over 7 semesters, this presentation explores stu- dents' experience with planning and executing a middle school mathematics lesson. The lesson, presented to a vir-
and their mathematics achievement.Time: 8:00-8:50 AMHelping Student Interns Think Critically AboutTheir Teaching LessonsCynthia Orona, University of ArkansasPre-service teachers are required to complete an internshipwhich eventually requires them to independently teach intheir placement classroom. The lessons that they have created in prior methods courses have not been as realistic asthey were visitors in the classroom and the expectationswere different. During their internship, the expectationshifts as they become the lead teacher in the classroom and	Room: Tampa Bay 1What Went Wrong: Pre-Service Teachers' Reflections on Lesson PlanningGlenn Phillips, Texas A&M UniversityAs pre-service teachers begin to plan lessons and classroom engagement strategies, it is important to note where their assumptions conflict with reality. Relying on data from 60 students over 7 semesters, this presentation explores stu- dents' experience with planning and executing a middle school mathematics lesson. The lesson, presented to a vir- tual class using a Second Life platform, was to run approx-

ated in prior methods courses have not been as realistic as	students over 7 semesters, this presentation explores stu-
they were visitors in the classroom and the expectations	dents' experience with planning and executing a middle
were different. During their internship, the expectation	school mathematics lesson. The lesson, presented to a vir-
shifts as they become the lead teacher in the classroom and	tual class using a Second Life platform, was to run approx-
are more aware of the needs of the students. In order to cre-	imately 20 minutes. The findings suggest that students do
ate effective lessons, teachers need to think more critically	not manage time appropriately, present examples that are
about the design and implementation of the lessons they	either too complex or too simple, and do not properly an-
are teaching. As teacher educators working with these stu-	ticipate questions that classroom attendees may have. The
dent interns, this study was conceptualized to help get the	implications of this work can be used to better prepare pre-
interns to think more critically by using practice and feed-	service teachers as they draft their first lesson plans. Addi-
back loops to guide their lesson planning and implementa-	tionally, these warnings can be used by observing teachers
tion. This presentation will provide the overall framework	to evaluate peers' or colleagues' lesson plans.
of the practice and feedback loop model. In addition, ini-	
tial results from the study will be discussed to determine	
how the study can be refined for full-scale implementation.	

Time: 8:00-8:50 AMRoom: Tampa Bay 2
Parent Workshops on 2nd, 3rd, and 4th Grade Whole Number Operation Tasks
Heidi Eisenreich University of Central Florida
The purpose of this study was to investigate the extent to which parents of first, second and third grade students who
attend a two day workshop on mathematics strategies differ on average and over time as compared to parents who
did not attend in the following areas: mathematics content knowledge, beliefs about learning mathematics, ability to
identify correct student responses, and ability to identify student errors. In addition, the researcher wanted to investigate
the difference between groups when looking at how familiar they were with manipulatives and whether they used the
standard algorithm or a new strategy to solve the problems. Both were not part of the original research questions,
but after conducting the research, these two areas were of interest to the researcher. For each of the four research
questions, the researcher used SPSS to run a two-factor split plot ANOVA. The results will be discussed to demonstrate
the need for more parent workshops that include parents engaging in the mathematics their children are learning about
by using similar strategies. By helping parents through workshop focused on parents constructing their own knowledge
and making sense of each other's solutions they are experiencing mathematics as their child does. This will help them
to understand what their child experiences in the classroom so they can make sense of their child's solutions instead of
encouraging their child to use the strategy that makes sense to the parents.

Time: 8:00-8:50 AM Room: Tampa Bay 3		
Using Technology to Engage Students in Introduc-	The Challenge of College Algebra: Year Two	
tory Statistics Topics		
Hope Marchionda, Western Kentucky University	Ladi Twast Indiana Stata University	
Melanie Autin, Western Kentucky University	Jodi Frost, indiana State University	
There is a belief that when students engage in their own	College algebra is a critical course for many students. The	
learning, their understanding and retention of the content	current pass rate at our university is only around sixty	
is greater. One way to engage students is through the use of	percent and many students require remedial math courses	
technology. To explore the use of technology in a student-	before being able to take college algebra. Failing college	
centered learning environment, two sections of collegiate	algebra or being forced to take a remedial course can neg-	
introductory statistics were compared. Online applets were	atively impact student retention and degree completion.	
used to investigate sampling distributions and the Central	Hoping to improve the success rate, a summer mathemat-	
Limit Theorem. One section was taught this content using	ics bridge program was developed and piloted during the	
traditional lecture, where the instructor demonstrated the	summer of 2014. Based on information obtained from the	
use of these applets while the students watched. In the	pliot study, the bridge program was rolled out to a larger	
second section, students actively used the applets in the	audience during the summer of 2015. The program's pur-	
over this content. In this talk, the student contered activi	and introduce them to some of the technology used by the	
ties and the applets will be shared. In addition results will	university. The results of the second year of the program	
be discussed	will be presented along with an interactive discussion on	
	how to enhance and improve the program moving forward.	
	The second se	
Time: 9:00-9:50 AM	Room: Michigan	
Role of Support Structure in the Suc	cess of Developmental Math Programs	
Elizabeth Howell	Southern Methodist University	
Developmental mathematics is increasingly scrutinized by leaders in higher education, many of whom have lost confidence		
in the ability of developmental mathematics programs to successfully prepare students for college-level mathematics		
courses. In the current study, students' successful completion of a prescribed developmental math sequence and their		
success in passing a credit-level math course are examined in the context of several potential predictor variables, including		
course format, demographic variables, and variables related to student support structures such as tutoring and other		
developmental coursework. A large longitudinal data set of community college students over a five year period provides		
rich insight into factors associated most strongly with successful outcomes for developmental math students. This paper		
extends previous work by focusing on two different analyses of student pathways through developmental math. The		
hirst analysis examines the support structure of tutoring for students beginning college in any level of developmental		
mathematics, and a secondary analysis focuses on factors that promote success for students who most need assistance		
- i.e. those starting college at the lowest lovels of math	anal promote success for students who most need assistance	
- i.e., those starting college at the lowest levels of math complex issues of developmental mathematics students an	remediation. This study provides valuable insight into the	

Time: 9:00-9:50 AMRoom: Okeechobee 1
Pre-service Teachers' Implementation of Physical and Virtual Manipulatives
Enrique Ortiz University of Central Florida
Heidi Eisenreich University of Central Florida
Laura Tapp University of Central Florida
With the accessibility of virtual manipulatives (apps and applets) in classrooms, it is necessary to reassess how these
advancements may impact the learning process and research efforts. A possible approach is a framework that combines
the well-known concrete (C), pictorial (P) and abstract (A) learning levels (CPA) with a proposed Virtual-level (V)
(CPAV). The V-level includes digital and dynamic (non-static) components, which allows students' virtual interaction
with digital tools such as images, words, numbers and graphs. It also involves different sublevels: Virtual-Concrete,
Virtual-Pictorial and Virtual Abstract. The framework will be discussed and demonstrated using easily available apps
and applets (for example, NCTM Illuminations and National Library of Virtual Manipulatives). It is very important
to understand what is involved in a virtual manipulative tool in order to provide for students' learning needs. We will
discuss mathematics pre-service teachers' understanding and possible misconceptions of the framework while developing
lesson plans and assessment activities. Several improvements are recommended in order to avoid participants' mis-
understandings. Most pre-service teachers demonstrated the ability to identify the levels involved in the instructional
activities for the C, P and A levels in pre-, post and follow-up-tests, and lesson plans, but had a harder time with the

Time: 9:00-9:50 AM	Room: Okeechobee 2
Blending Divergent Approaches to Learning a	and Teaching Algebra—A Case Study
Fay Zenigami	University of Hawaii at Manoa
Linda Venenciano	University of Hawaii at Manoa
This presentation reports on a case study of an eighth-grade tea	cher's use of lessons selected from a curriculum with a

V-sublevels. Participants are encouraged to bring their own iPads and computers.

This presentation reports on a case study of an eighth-grade teacher's use of lessons selected from a curriculum with a modeling and problem solving approach to algebra into a traditional Algebra I course. The study examines the process the teacher used for choosing the modeling lessons, the planning and adaptations the teacher incorporated into the lessons prior to teaching them, questions the teacher asked to engage students in the investigations, and teacher reflections on the impact of the lessons. When a new, more traditional, middle grades textbook was adopted for alignment with the series used by the high school grades, the teacher felt the need to supplement the program with investigative lessons to provide opportunities for students to explore algebra topics through the use of contextual, mathematical modeling. Data were collected from teacher interviews, teacher notes and reflections, classroom observations, and student exit passes. We will share specific results and then discuss the implications focused on modeling be limited by the traditional program on which the course is based? What teacher supports, such as suggested questions, might address components of the modeling cycle to facilitate student use of models to solve problems?

Time: 9:00-9:50 AM	Room: Pensacola Bay
Diagnostic Case Study: Similarities betwee	en Mathematics and Reading
Nichole Smith	North Carolina A&T State University
Kimberly Erwin	North Carolina A&T State University
Tyrette Carter	North Carolina A&T State University
This presentation will provide experiences from both graduate and	undergraduate teacher education candidates as they
create a diagnostic case study. The purpose of the Diagnostic and	d Prescriptive Case Study is to determine how effec-
tively candidates address the content proficiency of learners within	their classrooms through diagnostic and prescriptive
instruction. Candidates must assess student proficiency rates or sk	ill level of a content area, then design and implement
one remediation strategy age- or level-appropriate content specific	instruction to address the learner's ability level. The
candidate must construct a case report to detail the findings from	the assessments and the intervention plan for instruc-
tion, and the candidate will finally reflect on the learning experience	e. This presentation will describe the overall findings
and how the project affected student achievement.	

Time: 9:00-9:50 AM	Room: Tampa Bay 1
Reform-Statistics in the Middle Grades	Deepening Statistical Content Knowledge for the Common Core
Natasha Gerstenschlager Western Kentucky University	Jacqueline Wroughton, Northern Kentucky University
Statistics appears early in and often throughout the Com- mon Core Standards for Mathematics and has been evi- dent in Principles and Standards for School Mathematics for almost 15 years. Unfortunately, many teachers who are expected to teach statistics do not have adequate content knowledge nor do they feel prepared to teach statistics in the way that is envisioned in these documents. In this pre- sentation, results will be shared from a study that aimed to better understand how reform-oriented statistics lessons are implemented on a daily basis. The study revealed sup- ports and barriers that affected the implementation fidelity	Brooke Buckley, Northern Kentucky University With the adoption of the Common Core State Standards by Kentucky legislators, many in-service middle and sec- ondary teachers find themselves with a shortage of statis- tical content knowledge to teach the statistics standards. The development and implementation of an intensive pro- fessional development workshop was undertaken with the following outcomes: create content focusing on statistical content knowledge as it relates to the Common Core State Standards; deepen middle and secondary in-service teach- ers' statistical content knowledge; increase middle and sec- ondary in-service teachers' self-efficacy for teaching statis-
of a reform-oriented statistics unit in the middle grades. Specifically, the teacher in the study identified several sup- ports and barriers that demonstrated a need for improved content knowledge and pedagogical content knowledge for teachers expected to teach this content. Participants in this session will brainstorm ways to address the specific supports and barriers revealed from this study.	tical content in the Common Core State Standards; and improved attitude towards statistics for middle and sec- ondary in-service teachers. To evaluate the success of these outcomes several validated instruments were used in a pre/post assessment. This presentation will address the initial offering of the workshop, including the content cov- ered and assessment results. A portion of the presentation will consist of a discussion of the research design and its limitations.

Time: 9:00-9:50 AMRoom: Tampa Bay 2Tinkerplots and K-8 Mathematics EducationLucas FosterNortheastern State UniversityK-8 Mathematics Educators are frequently exposed to real-world situations in which they are required to make decisions
that require a deep understanding of mathematics and statistics. In order to be adequately prepared to make informed
decisions, teachers and their students need to be able to think and reason statistically. Thus, statistical literacy is a
vital part of the educational process of students. The purpose of this study was to determine through both qualitative
and quantitative methodology whether the use of Tinkerplots[™] in a mathematics modeling classroom influenced pre-
service teachers' level of statistical literacy. With this information, K-8 teachers may be able to offer their students an
alternative approach to learning statistical concepts.

Time: 9:00-9:50 AM	Room: Tampa Bay 3
Guided Reinvention of Sequence Convergence: A	Framework for Assessing College Students' Duality
Study of Two Students	Conception of Infinity
Beth Cory, Sam Houston State University	Grace Babarinsa-Ochiedike, The University of Texas at El
Ayse Ozturk, Sam Houston State University	Paso
Attendees will learn how a pair of calculus students devel-	This qualitative study examines college students' concep-
oped a rigorous formal definition for the limit of a sequence	tion of duality in understanding and representing infinity
during an 11-day guided reinvention teaching experiment.	using two different formats: the written questionnaire and
The experiment involved an iterative refinement process	the interview. The study found that coding and assessing
during which the pair created a definition, evaluated their	college students' conception of duality is challenging and
definition against examples and non-examples, acknowl-	complex process due to the dynamic nature of the concep-
edged a problem(s) with their current definition, discussed	tion that is task-dependent and context-dependent. The
potential solutions, and attempted to incorporate a solu-	existence of fluctuation in students' views of infinity posits
tion(s) into a new definition, thereby restarting another	challenges for researchers in interpreting students' percep-
iteration. Although neither student had received prior	tions of infinity as either a process or an object, and es-
instruction on formal limit definitions, they were able to	pecially in determining the students' process-object dual-
reinvent definitions consistent with formal theory. Specifi-	ity conception. The purpose of this paper is to present a
cally, this session explores the emergence of errors and error	framework for assessing students' duality conception of in-
bounds in their definitions.	finity. Data for the study were collected from N=5 college
	Calculus I students at one of the southwestern universities
	in the U.S. Data was triangulated using multiple measures
	analyzed by three independent experts using self-designed
	coding sheet to assess students' externalization of the du-
	ality conception of infinity.

Time: 10:00-10:50 AM

Students' Conceptions of Negative Integers

Virginia Tech

Room: Michigan

Karen Zwanch The concept of negative integers is necessarily one which students must master prior to entering algebra. It is also one with which students traditionally struggle past the age of developmental preparedness. The present research modeled one third grade student's conception of negative integers within the theoretical framework of Central Conceptual Structure of Numbers (CCSN). The purpose of this research was to better understand how students conceptualize negative integers prior to any instruction on the topic. The participant demonstrated a conceptualization of negative integers consistent with a formal mental model of integers' order and value. The participant did not, however, demonstrate understanding of the three distinct meanings of the minus sign. An understanding of students' mental models of integers' order and value is beneficial to mathematics teachers at all grade levels, as it is one component of students' readiness for accepting instruction on both the integer system and algebra.

Time: 10:00-10:50 AM	Room: Okeechobee 1
Is Change Possible? Practicum as a Way to View Math Ability Differently	
Carolyn Mitten	University of Florida
Teacher beliefs can significantly impact both teaching practices and student learning opportu	unities. How are these beliefs
formed and can they be changed? Teacher education programs provide a unique opportu	unity to influence the beliefs
of future mathematics teachers in ways that benefit student learning for all kinds of learn	ners. In this session, we will
take an in-depth look at how one practicum experience impacted pre-service teachers' belief	is about the math abilities of
high-needs students. Beliefs surveys were conducted to identify changes in beliefs and pre-se	rvice teacher reflections were
analyzed to identify why and how these changes occurred. A discussion on how findings of	can inform future practicum
experiences and support the learning of high-needs students will follow.	

Time: 10:00-10:50 AM Room: Okeechobee 2 A Latent Class Analysis of Algebra I Students in Florida Thomasenia Adams University of Florida Algebra Nation is an online algebra resource that has been developed with a two-fold purpose: prepare algebra students for the Algebra 1 Florida Standards Assessment and help algebra teachers improve their instructional practice. The purpose of this study is to 1) identify classes of Florida Algebra I students based on race, gender, socioeconomic status, location in the state, and Algebra 1 achievement and 2) determine the relationship between Algebra Nation use and outcomes. These class identifiers were chosen because of their interdependence with one another and the confounding effects that they have in regards to differential achievement in mathematics (Reyes, L. & Stanic, G., 1988).

Time: 10:00-10:50 AM	Room: Pensacola Bay
Exploring Mental Models of "Do	ing Math" through Drawings
Ben Wescoatt	Valdosta State University

Ben Wescoatt

This preliminary study explores the mental models that pre-service teachers have of doing math. Mental models are cognitive structures people use while reasoning about the world. Mental models related to mathematics held by a teacher could influence a teacher's pedagogical decisions and thus influence the mental model of mathematics that his or her students construct. These mental models could then affect career choices made by the students, influencing whether or not they enter a mathematical field. In this study, pre-service elementary teachers (PSTs) drew images of mathematicians doing math and of themselves doing math. Using comparative judgments, the PSTs selected the image that best represented a mathematician doing math. Representing a mental model shared by the PSTs, this image, along with most of the other highly-selected images, was of a man in front of a blackboard filled with mathematical symbols. The mathematicians generally appeared happy. Many images of the participants doing math showed them to be unhappy or in confused states and in schooling or learning situations. The preliminary results suggest that the PSTs' shared mental model of doing math is naïve and shaped by limited experiences with mathematics in the classroom. leading to the belief of mathematics as merely a school subject.

Time: 10:00-10:50 AM	Room: Superior	
Purposefully Planning for Mathematics Discourse		
Andria Disney	University of Montana	
David Erickson	University of Montana	
How can we support teachers to create more opportunities for their students to engage in n	mathematics discourse? This	
research study explores how a professional development program impacts teacher learning a	around purposefully planning	
for mathematics discourse and its impact, if any, on the nature of the discourse during	mathematics instruction in	
elementary classrooms. The professional development was designed with three primary a	goals in mind: (1) to honor,	
leverage, and develop teacher expertise in facilitating mathematics discourse; (2) to work	within the school and class-	
	1 (0)	

room context by using and enhancing the adopted non-reform mathematics curriculum; and (3) to create a system of collegial support for making instructional changes around mathematics discourse practices that is both sustainable and transferrable. During the session, we will share research in best practice around facilitating productive mathematics discourse, examine this study's professional development design, and share the preliminary results of the data collection. Through these efforts, we hope to identify promising practices in supporting teacher learning and instructional change around mathematics discourse that can be incorporated in professional learning communities without outside experts or increased costs to a district.

Time: 10:00-10:50 AM Room: Tampa Bay	y 1	
First Look! A Validation Study of the SMPs Look-for Protocol		
Jonathan Bostic Bowling Green State Univers	sity	
Gabriel Matney Bowling Green State Univers	sity	
The purpose of the session is to share evidence supporting validation of a Standards for Mathematical Practice (SMPs)		
look-for protocol. The Common Core State Standards (CCSSI, 2010) suggests eight SMPs, which characterize ma	th-	
ematical behaviors and habits that students should express during mathematics instruction, and conversely, behaviors		
and habits that teachers' instruction ought to encourage during lessons. Tools such as the Reformed Teaching Observa-		
tion Protocol, Instructional Quality Assessment, and Mathematical Quality of Instruction offer a breadth of resources		
to explore teachers' instruction but none accurately or appropriately allows users to code teachers' instruction for su	ıch	
behaviors and habits described in the SMPs. We will share initial results from a validation study that may inform oth	ers	
seeking to explore teachers' instruction in both real-time and video recorded instances.		

Time: 10:00-10:50 AM	Room: Tampa Bay 2	
Examining an Instrument Designed to Measure the Quality of Instruction		
Kristopher Childs	Texas Tech University	
Juli Dixon	University of Central Florida	
Makini Cambell-Sutherland	University of Central Florida	
Haiyan Bai	University of Central Florida	
This research will focus on determining the reliability and validity of	f the Instructional Quality Assessment (IQA) Class-	

room Observation Tool with a primary grades population. According to Boston (2012), the mathematics rubrics of the IQA assess on four observable indicators: cognitively challenging instructional tasks, task implementation or opportunities for students to engage in high-level thinking and reasoning throughout an instructional episode, opportunities for students to explain their mathematical thinking and reasoning in mathematical discussions or in written responses, and teachers' expectations for students' learning. They are organized within two rubrics, Academic Rigor (AR) and Accountable Talk (AT). The description of these rubrics provided here is based on the explanations provided by Boston and Wilhelm (2015). Previous studies have found a relationship between cognitively challenging tasks and students opportunity to learn mathematics. We will seek to determine if prior studies reveal similar results to our present study.

Time: 11:00-11:50 AM Room: Michigan		
Improve Elementary Teachers' Understanding of Base-ten Place Value System		
Lina DeVaul University of Nevada, Las Vegas		
Amy Adkins University of Nevada, Las Vegas		
Carryn Warren University of Nevada, Las Vegas		
The base-ten place value system is the foundation for modern math. The ancient Egyptian number system can be		
used as a comparative number system to improve students' conceptual understanding of the current Hindu-Arabic		
number system. Different student activities have been carried out based on the Egyptian number system to improve		
students' conceptual understanding of the place value system, such as Time-Travel Days, and Math through the Ages.		
However, few professional development programs were found to use the Egyptian number system as a training resource		
for teachers. This study designed a professional development activity based on the Egyptian number system to deepen		
primary teachers' conceptual understanding of the place value system and Hindu-Arabic base ten number system.		
Teachers may also utilize this activity in their own classroom following this presentations. The presentation will have		
three sections. First, introduction of this professional development activity. Second, handouts will be sent out and		
audiences will go through the professional development activity by using ancient Egyptian symbols to regroup base-ten		
multi-digits numbers, to do addition and subtraction, and to transform numbers between Egyptian numbers and Hindu-		
Arabic numbers. Third, the professional development activity has already been carried out during the summer 2015, in		
the Clark County School District in Nevada. Research findings and conclusion will be presented and discussed.		

Time: 11:00-11:50 AMRoom: Okeechobee 1		
Colligation and Unit Coordination in Mathematical Argumentative Writing		
Karl Kosko Kent State University		
Rashmi Singh Kent State University		
This study reports on 2nd and 3rd grade students' use of colligation in mathematical argumentative writing (MAW).		
According to Pierce (1903), colligation is what allows for connecting various warrants for a claim into a singular proposi-		
tion. In children's MAW, colligation is represented by students' ability to reference given information from a task within		
their writing, and to operationalize those references to support a mathematical claim. This study examined students'		
ability to successfully enact colligation in relation to their unit coordination in multiplicative contexts. Students in a		
Midwestern state (n=163) completed an assessment of unit coordination for multiplication and also completed a set of		
mathematical writing prompts. Writing prompts included three tasks that related to multiplicative contexts via length		
models, and three tasks that related to addition and subtraction within 100 (e.g., $a + b = c + d$). Our findings suggest		
that students who are able to iterate and partition non-1 units (i.e., skip-counting) are better able to operationalize		
given information from both types of tasks in their MAW. Students with less advanced unit coordination were more		
likely to interject new information not presented in the tasks.		

Time: 11:00-11:50 AM	Room: Okeechobee 2	
Pre-service Teachers' Acceptance of Number Concepts Instruction in Base 8		
Katie Harshman	University of Central Florida	
Heidi Eisenreich	University of Central Florida	
Teacher preparation is an area in which there should be constant revan	nping. Research is continually showing us better	
ways to educate students, so in turn, teacher preparation programs sl	hould be changing as well. Pre-service teachers	
can enter universities with certain beliefs about teaching and learning	that are not congruent with current reforms in	
education (Stohlmann, Cramer, Moore, & Maiorca, 2014). Research su	ggests that teacher beliefs are critical to student	
success (Achieve, 2012), and that while those beliefs are rooted in years	s of learning in a specific fashion, through proper	
training, those beliefs can be changed. The purpose of this grounded the	eory study was to discover the reason pre-service	
teachers in an elementary mathematics content course accepted instru	uction on mathematics in another base system.	
Results from this study showed pre-service teachers felt instruction in	base 8 was useful to them in preparing to enter	
the teaching profession. Learning in base 8 made them remember the	e frustrations and struggles they encountered as	
elementary school students. Results suggest that pre-service teachers	could be more prepared to teach concepts and	
more likely to be patient with their future students if taught in base 8.		
Time: 11:00-11:50 AM	Room: Pensacola Bay	
Draw Yourself Doing Mathematics: Assessing a Mathematics and Dance Class		
Rachel Bachman	Weber State University	
Learn how recent RCML-developed drawings prompts were adapted for i	ise in a general education mathematics classroom	

Learn how recent RCML-developed drawings prompts were adapted for use in a general education mathematics classroom to understand the affective factors influencing the learning of mathematics, trends in stereotypical views of the subject, and changes in views toward mathematics over a semester. This prompt was used as part of a larger study to assess the effectiveness of a mathematics and dance course. Some elements of the larger study will be shared for context. This presentation will showcase trends in the drawings, changes in pre to post drawings, differences in drawings from the traditional and experimental classrooms, and efforts to develop standardized coding instruments for this drawing prompt. Participants will be encouraged to provide feedback about future development of the coding instruments.

Time: 11:00-11:50 AM	Room: Superior	
Academic Rigor in Single-sex and Coeducational Middle Grades Math Classes		
Dennis Kombe	Clemson University	
Megan Che	Clemson University	
This study examines differences in academic rigor between single-sex classes and coeducational cla	asses in public school,	
middle grades mathematics classrooms. Data for this study include 122 video recorded instru	ictional sessions from	
all-boys, all-girls and coeducational mathematics classrooms. Each instructional session was eva	aluated and rated for	
academic rigor using the Instructional Quality Assessment (IQA), which considers academic rigor,	accountable talk, and	
teacher's clarity of expectations. Scores from the IQA were then analyzed using ANOVA. Findi	ings suggest there are	
no significant differences in academic rigor between single-sex and coeducational mathematics cla	assroom settings. We	
question the veracity of implementing single-sex educational options in coeducational public school	ols and posit that it is	
teachers, rather than settings, that are greater influencers of academic rigor in middle grades mat	thematics classrooms.	
Time: 11:00-11:50 AM Ro	oom: Tampa Bay 1	
Instructional Practices Related to Developing Productive Disposition		

1 0	-
Maureen Grady	East Carolina University
This study examines instructional practices related to the development of on	e critical aspect of productive disposition,
the tendency to see mathematics as sensible. In this study, I looked at the c	conceptions of mathematics of a 9th grade
beginning algebra class and at the instruction practices that appeared to be a	related to the development of a conception
of mathematics as sensible in these students. Results from this study indicate	that such a conception of mathematics can
develop in a diverse student population and that specific instructional practic	es seem to be related to this development.
This session will explore some of those instructional practices with a partic	cular focus on practices related to helping
students see and value connections both within mathematics and between mathematics	athematics and students' everyday lives.

2015 RCML Board Meeting Minutes: February 27, 2015

Past-President Mary Swarthout called the general business meeting to order.

Attendees raised their hands for those who were first time attendees, first year members, tenured faculty, and those who have attended 10+ years

Mary Swarthout introduced the new officers and newly elected committee members: Sarah Pratt, Secretary Hope Marchiando & Bill McGalliard, Conference Committee Members

Mary Swarthout introduced and welcomed the new president, Juliana Utley, and turned the business meeting over for her to conduct.

Approval of Minutes: Darlinda Cassel presented the minutes from the RCML 2014 conference business meeting, which was also distributed in the 2014 Newsletter. Melfried Olson moved to approve the minutes, seconded by Keith Adolphson. No discussion. Motion carried.

Treasurer's Report: Kerri Richardson, Treasurer, presented the budget report for 2014. Kerri showed that RCML netted money in the two accounts held by RCML, the Publications account and Regular account. Kerri reported that by allowing PayPal as an option to pay for membership, there was an ease in the accounting of membership dues paid. She provided a three year overview of the accounts and showed an increase in 2014 due to more journal subscriptions. Bob Drake moved to approve the minutes, seconded by Alan Zollman No discussion. Motion carried.

Membership Report: Sarah Pratt delivered the membership report. As of December 31, 2014, the membership of RCML is stable at 154 members (up from last year's membership of 130). In 2015 as of the time of the conference there are 170 members. She reported that by using online membership registration and Paypal as an option, the membership roster and collection of dues is much smoother. She looks forward to continuing to use this process.

Publications Report: Sheryl Maxwell Business manager Sheryl reported that the most recent newsletter was emailed in February 2015; sent by Summer Batieha. She then reported that the newest issue of Volume 7 Issue 3 will soon be published and that any new members can write their name on the list and will receive this copy in the mail. Sheryl also relayed that editor Vicki Schell is asking for those who want to review articles for the journal. Please contact her and include 2 areas of expertise. Sheryl then conducted a prize drawing – 17 journals to give away: Jacob Musal, Laura Tapp, Sarah High, Lauren Wells, Maureen Grady, Keith Hubbard, Nicole Bamford, Trina Davis, Molly Weinburgh, Matt Roscoe, Rebecca Gault, Ken Butler, Stephanie Capen, Nickolaus Ortiz, Danya Corkin, Carolyn Mitten, Susie Morrissey were the winners.

 $\underline{\text{VP of Conferences}}$: Eileen Faulkenberry reported that there were 160 registratants for this conference. She then discussed that this was the first year for poster sessions, and that it seemed to be a success. She followed by saying there have been great sessions already. She informed the attendees that the Founders Lecture will be at 4:30, and asked that the posters be taken down at that time.

Eileen announced that the 2016 Conference Chair is Gabriel Matney, with Messi as the local contact. The hotel and conference is booked near Sea World. The dates for the conference are last weekend in February 25-27, 2016. She informed the group that proposals are due September 15, 2015, and encouraged members to also submit proceedings paper.

She concluded by giving thanks to the 2015 Program Chair, Christa Jackson, and to the 2015 Conference Co-Chairs, Jeff Shih & Travis Olson.

Proceedings Editor and Co-Editor: Megan Che & Keith Adolphson offered their thanks to to reviewers and asked for those who volunteered to raise their hands. Megan gave her thanks to Keith and working together, to share and distribute effort. She also thanked Traci Carter as editorial assistant. She concluded by thanking the organization for the opportunity. Keith reported that there was 40% acceptance rate; 23 accepted from submissions. Proceedings given in flash drive at conference check-in. A question was asked about how one can become a reviewer, Keith answered by informing the membership to send him an email to Keith Adolphson if you are interested.

Eileen announced a change to program: Darlinda & Landa was scheduled at 8:00 am will now be in Apollo 7 at 3:30 pm.

Mary Swarthout, Past-President, made a call for nominations, stating that nomination forms on tables. She suggested that any questions about what these positions entail, please talk to officers. Self-nominations are accepted. Mary announced that nominations will be provided in the October newsletter.

 Recognition and awards: Juliana Utley, President, gave recognition of service and awards for the following:

 Conference chair, Travis Olson & Jeff Shih

 Program chair, Christa Jackson

 Awards for past conference chairs, Angela Kribbs and Thomas Faulkenberry

 Proceedings chair and co-chair: Megan Che & Keith Adolphson

 Secretary: Darlinda Cassel

 Past-President: Mary Swartout

 Recognition of the Memorial Scholarship recipient for this year

 In honor of David Davison

 The winner is Jonathan Bostic

Juliana Utley, President, asked for any new business. One statement made is that in the future we will be cleaning up the new by-laws

Jonathan Bostic asked if there is any consideration for moving to paper and online format for the journal. Discussion of this led to the membership being informed that the Board is exploring all options and more information will be forthcoming, hopefully by the 2016 RCML conference.

Bob Drake motioned to adjourn, seconded by Gabriel Matney. No discussion. Voted in favor. Meeting adjourned.

Presenters Index

Adams, Thomasenia, University of Florida, tla@coe.ufl.edu, 39 Adkins, Amy, University of Nevada, Las Vegas, adkinsa5@unlv.nevada.edu, 12, 31, 40 Adu-Gyamfi, Kwaku, East Carolina University, adugwamfik@ecu.edu, 26, 31 Allen-Lyall, Barbara, Manhattanville College, barbara.allenlyall@mville.edu, 19 Autin, Melanie, Western Kentucky University, melanie.autin@wku.edu, 35 Babarinsa-Ochiedike, Grace, The University of Texas at El Paso, gobabarinsa@utep.edu, 38 Bachman, Rachel, Weber State University, rachelbachman1@weber.edu, 33, 41 Bai, Haiyan, University of Central Florida, haiyan.bai@ucf.edu, 40 Baker, Mary, University of North Dakota, mary.baker@email.und.edu, 18 Banker, Deborah, Texas Southmost College, deborah.banker@tsc.edu , 20 Bates, Rachel, Redlands Community College, rachel.bates@redlandscc.edu, 29 Bihm, Elson, University of Central Arkansas, elsonb@uca.edu, 16 Bostic, Jonathan, Bowling Green State University, bosticj@bgsu.edu, 13, 39 Bowman, Clay, Mustang High School, bowmanc@mustangps.org, 18 Bowman, Elayne, Oklahoma Christian University, elayne.bowman@oc.edu, 18 Brintnall, Sheila, Northwestern Oklahoma State University, skbrintnall@nwosu.edu, 18 Brown, Patrick, Western Kentucky University, patrick.brown@wku.edu, 24 Brown, Sue, University of Houston, Clear Lake, browns@uhcl.edu , 16 Browning, Sandra, University of Houston, Clear Lake, browning@uhc.edu, 16 Buckley, Brooke, Northern Kentucky University, bucklevb1@nku.edu, 37 Burton, Megan, Auburn University, megan.burton@auburn.edu, 17 Butler, Kenneth, University of South Florida, butlerk1@usf.edu, 31 Callahan, Kadian, Kennesaw State University, kmcallahan@kennesaw.edu, 19 Cambell-Sutherland, Makini, University of Central Florida, makini.sutherland@knights.ucf.edu, 40 Campbell-Sutherland, Makini, University of Central Florida, makini.sutherland@knights.ucf.edu, 30 Carter, Tyrette, North Carolina A&T State University, tscarte1@ncat.edu, 17, 36 Case, Catherine, University of Florida, ccase@ufl.edu, 28 Cassel, Darlinda, University of Central Oklahoma, dcassel2@uco.edu, 25 Cerezo, Nancy, Saint Leo University, nancy.cerezo@saintleo.edu, 20

Chamblee, Gregory, Georgia Southern University, gchamblee@georgiasouthern.edu, 12 Che, Megan, Clemson University, sche@clemson.edu, 41 Childs, Kristopher, Texas Tech University, kristopher.childs@ttu.edu, 40 Columba, Lynn, Lehigh University, hlc0@lehigh.edu, 21 Conrady, Kansas, University of Oklahoma, kansas.conrady@ou.edu, 23, 30 Corkin, Danya, Rice University, dmc7@rice.edu, 12 Cory, Beth, Sam Houston State University, bcory@shsu.edu, 38 DeVaul, Lina, University of Nevada, Las Vegas, zangl@unlv.nevada.edu, 31, 40 Disney, Andria, University of Montana, andria.disney@umontana.edu, 39 Dixon, Juli, University of Central Florida, juli.dixon@ucf.edu, 34, 40 Drake, Bob, SUNY Plattsburgh, bob.drake@plattsburgh.edu, 27 Eddy, Colleen, University of North Texas, colleen.eddy@unt.edu, 23Eisenreich, Heidi, University of Central Florida, heisenreich@knights.ucf.edu, 34, 36, 41 Erickson, David, University of Montana, david.erickson@mso.umt.edu, 39 Erwin, Kimberly, North Carolina A&T State University, kderwin@ncat.edu, 36 Evans, Brian, Pace University, bevans@pace.edu, 33 Everett, Kari, Eastern Kentucky University, kari.everett@eku.edu, 12 Faulkenberry, Eileen, Tarleton State University, efaulkenberry@tarleton.edu, 17, 31 Fields, Melanie, Texas A&M University-Commerce, melanie.fields@tamuc.edu, 17 Fletcher, Justin, Choctaw Middle School, jfletcher@cnpschools.org, 25 Fletcher, Marcia, L W Westfall Elementary Choctaw, mfletcher@uco.edu, 25 Folger, Tim, Bowling Green State University, tdfolge@bgsu.edu, 13 Foster, Lucas, Northeastern State University, fosterlb@nsuok.edu, 37 Fox, Ryan, Belmont University, ryan.fox@belmont.edu, 20, 27 Francis, Tori, University of Central Arkansas, tfrancis3@cub.uca.edu, 16 Frost, Jodi, Indiana State University, jodi.frost@indstate.edu, 35 Gault, Rebecca, University of Central Florida, rebecca.gault@knights.ucf.edu, 16 Gerstenschlager, Natasha, Western Kentucky University, natasha.gerstenschlager@wku.edu, 37 Grady, Maureen, East Carolina University, gradym@ecu.edu, 26, 41 Gresham, Gina, University of Central Florida, gina.gresham@ucf.edu, 29

Hanlon, Adele, Jacksonville University, <code>ahanlon@ju.edu</code>, 16

- Harshman, Katie, University of Central Florida, katie.harshman@knights.ucf.edu, 41
- Hayata, Carole, Southern Methodist University, chayata@mail.smu.edu, 28
- Hensberry, Karina, University of South Florida St. Petersburg, khensberry@usfsp.edu, 26
- Howell, Elizabeth, Southern Methodist University, ehowell@smu.edu, 35
- Howell, Tracey, University of North Carolina at Greensboro, thhowell@uncg.edu, 33
- Hulgin, Kathleen, University of Cincinnati Clermont, hulginkm@ucmail.uc.edu, 27
- Ito, Taro , University of Nevada, Las Vegas , taro@unlv.nevada.edu, 31
- Jensen, Taylor, Western Governors University, taylor.jensen@wgu.edu, 25
- Jordan, Pat, Retired from Oklahoma State University, patricia.jordan@okstate.edu, 27
- Kombe, Dennis, Clemson University, dkombe@clemson.edu, 41
- Kosko, Karl, Kent State University, kkosko
1@kent.edu, 40
- Kruse, Lance, Bowling Green State University, lancek@bgsu.edu, 13
- Kuehnert, Eloise, University of North Texas, eloise.kuehnert@unt.edu, 13, 23
- Liu, Xiongyi, Cleveland State University, x.liu6@csuohio.edu, 13, 19
- Lucas, Carol, University of Central Oklahoma, clucas@uco.edu, $16\,$
- Maiorca, Cathrine, University of Nevada Las Vegas, cemaiorca@icloud.com, 32
- Mallam , Winifred, Texas Woman's University, wmallam@twu.edu, 13
- Mann, Bob, Western Illinois University, rr-mann@wiu.edu, 32
- Marchionda, Hope, Western Kentucky University, hope.marchionda@wku.edu, 24, 35
- Matney, Gabriel, Bowling Green State University, gmatney@bgsu.edu, 15, 24, 39
- McGalliard, William, University of Central Missouri, mcgalliard@ucmo.edu, 17, 27
- Mitten, Carolyn, University of Florida, cmitten@ufl.edu, 24, 38
- Nickels, Megan, University of Central Florida, megan.nickels@ucf.edu, 22
- Olson, Judith, University of Hawaii, jkolson@hawaii.edu, 29

Olson, Melfried, University of Hawaii, melfriedolson@gmail.com, 29

- Orona, Cynthia, University of Arkansas, orona@uark.edu, 14, 34 Ortiz, Enrique, University of Central Florida,
- enrique.ortiz@ucf.edu, 36
- Ortiz, Nickolaus, Texas A&M, nkortz89@tamu.edu, 26
- Ozturk, Ayse, Sam Houston State University, ano
015@shsu.edu, $_{\ensuremath{38}}$
- Perdue, Diana, University of Trinidad & Tobago, diana.perdue@gmail.com, 14
- Peters, Jenny, Oklahoma State University, jenny.peters@okstate.edu, 23
- Phillips, Glenn, Texas A&M University, glennallenphillips@gmail.com, 14, 34
- Pinchback, Carolyn, University of Central Arkansas, carolinp@uca.edu, 16
- Polly, Drew , University of North Carolina at Charlotte, drew.polly@uncc.edu, 22, 32

r.pourdavood@csuohio.edu, 14, 18 Pratt, Sarah, University of North Texas, sarah.pratt@unt.edu, 13.23 Reeder, Stacy, University of Oklahoma, reeder@ou.edu, 17 Reid, Anita, Lewistown High School, areid@lewistown97.net, 32 Richardson, Kerri, University of North Carolina at Greensboro, kdricha2@uncg.edu, 17 Roy, George, University of South Carolina, roygj@mailbox.sc.edu, 26 Sadler, Jeffrey, Fort Hays State University, jdsadler@fhsu.edu, 25 Safi, Farshid, University of Central Florida, farshid.safi@ucf.edu, 25Sahin, Nesrin, University of Central Arkansas, nesrins@uca.edu, 34Schlosser, Megan, Bowling Green State University, meganms@bgsu.edu, 13 Seaman, Carol, University of North Carolina at Greensboro, ceseaman@uncg.edu, 33 Sela, Hagit, University of Florida, College of Education, hagit.sela@coe.ufl.edu, 20 Sharon, Valerie, Sam Houston State University, vvs001@shsu.edu, 33 Singh, Rashmi, Kent State University, rsingh9@kent.edu, 40 Smith, Nichole, North Carolina A&T State University, nlsmith2@ncat.edu, 36 Sotillo-Turner, Mercedes, Full Sail University, msotillo@fullsail.com, 27 Stern, Erik, Weber State University, estern@weber.edu, 33 Sullivan, Corrinne, Bowling Green State University, sullivc@bgsu.edu, 15 Swarthout, Mary, Sam Houston State University, swarthout@shsu.edu, 33 Tapp, Laura, University of Central Florida, laura.tapp@knights.ucf.edu, 36 Telese, James, University of Texas, Rio Grande Valley, james.telese@utrgv.edu, 19 Thompson, Tony, East Carolina University, thompsonan@ecu.edu, 26, 31 Trowell, Sandra, Valdosta State University, strowell@valdosta.edu, 24 Utley, Juliana, Oklahoma State University, juliana.utley@okstate.edu, 17 Venenciano, Linda, University of Hawaii at Manoa, lhirashi@hawaii.edu, 28, 36 Wachira, Patrick, Cleveland State University, p.wachira@csuohio.edu, 13, 19 Wagner, Robert, University of Florida, College of Education, wagnerro@ufl.edu, 20 Walker, Dena, Northwestern Oklahoma State University, dewalker@nwosu.edu, 18 Warren, Carryn, University of Nevada, Las Vegas, carryn.bellomo@unlv.edu, 40 Wescoatt, Ben, Valdosta State University,

Pourdavood, Roland, Cleveland State University,

- bmwescoatt@valdosta.edu, 39
- Wheeler, Ann, Texas Woman's University, awheeler
2@twu.edu,28
- Whitaker, Douglas, University of Florida, whitaker@ufl.edu, 30 Wroughton, Jacqueline , Northern Kentucky University ,
 - wroughtonj1@nku.edu, 37

- Yagi, Seanyelle, University of Hawaii at Manoa, slyagi@hawaii.edu, 21
- Zenigami, Fay, University of Hawaii at Manoa, zenigami@hawaii.edu, 28, 36

Zollman, Alan, Indiana University Southeast, alanzoll@ius.edu, $^{\ \ 22}$

Zwanch, Karen, Virginia Tech, kzwanch@vt.edu, 38